
Chapter 9 – Support Vector Machines

Wenjing Liao

School of Mathematics
Georgia Institute of Technology

Math 4803
Fall 2019

Outline

1 9.1 – Maximal margin classifier

2 9.2 – Support vector classifiers

3 9.3 – Support vector machine

4 9.4 – SVMs with more than two classes

2 / 23

What is a hyperplane?

338 9. Support Vector Machines

9.1 Maximal Margin Classifier

In this section, we define a hyperplane and introduce the concept of an
optimal separating hyperplane.

9.1.1 What Is a Hyperplane?

In a p-dimensional space, a hyperplane is a flat affine subspace of
hyperplane

dimension p − 1.1 For instance, in two dimensions, a hyperplane is a flat
one-dimensional subspace—in other words, a line. In three dimensions, a
hyperplane is a flat two-dimensional subspace—that is, a plane. In p > 3
dimensions, it can be hard to visualize a hyperplane, but the notion of a
(p− 1)-dimensional flat subspace still applies.

The mathematical definition of a hyperplane is quite simple. In two di-
mensions, a hyperplane is defined by the equation

β0 + β1X1 + β2X2 = 0 (9.1)

for parameters β0, β1, and β2. When we say that (9.1) “defines” the hyper-
plane, we mean that any X = (X1, X2)

T for which (9.1) holds is a point
on the hyperplane. Note that (9.1) is simply the equation of a line, since
indeed in two dimensions a hyperplane is a line.

Equation 9.1 can be easily extended to the p-dimensional setting:

β0 + β1X1 + β2X2 + . . . + βpXp = 0 (9.2)

defines a p-dimensional hyperplane, again in the sense that if a point X =
(X1, X2, . . . , Xp)

T in p-dimensional space (i.e. a vector of length p) satisfies
(9.2), then X lies on the hyperplane.

Now, suppose that X does not satisfy (9.2); rather,

β0 + β1X1 + β2X2 + . . . + βpXp > 0. (9.3)

Then this tells us that X lies to one side of the hyperplane. On the other
hand, if

β0 + β1X1 + β2X2 + . . . + βpXp < 0, (9.4)

then X lies on the other side of the hyperplane. So we can think of the
hyperplane as dividing p-dimensional space into two halves. One can easily
determine on which side of the hyperplane a point lies by simply calculating
the sign of the left hand side of (9.2). A hyperplane in two-dimensional
space is shown in Figure 9.1.

1The word affine indicates that the subspace need not pass through the origin.

9.1 Maximal Margin Classifier 339

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

X1

X
2

FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1 + 2X1 + 3X2 > 0, and the purple region is the set of
points for which 1 + 2X1 + 3X2 < 0.

9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have a n×p data matrix X that consists of n training
observations in p-dimensional space,

x1 =

⎛
⎜⎝

x11

...
x1p

⎞
⎟⎠ , . . . , xn =

⎛
⎜⎝

xn1

...
xnp

⎞
⎟⎠ , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

test observation, a p-vector of observed features x∗ =
(
x∗

1 . . . x∗
p

)T
. Our

goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane.

separating
hyperplaneSuppose that it is possible to construct a hyperplane that separates the

training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and

3 / 23

Classification using a separating hyperplane

Data matrix: X ∈ Rn×p

9.1 Maximal Margin Classifier 339

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

X1

X
2

FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1 + 2X1 + 3X2 > 0, and the purple region is the set of
points for which 1 + 2X1 + 3X2 < 0.

9.1.2 Classification Using a Separating Hyperplane

Now suppose that we have a n×p data matrix X that consists of n training
observations in p-dimensional space,

x1 =

⎛
⎜⎝

x11

...
x1p

⎞
⎟⎠ , . . . , xn =

⎛
⎜⎝

xn1

...
xnp

⎞
⎟⎠ , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

test observation, a p-vector of observed features x∗ =
(
x∗

1 . . . x∗
p

)T
. Our

goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane.

separating
hyperplaneSuppose that it is possible to construct a hyperplane that separates the

training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and

Separating hyperplane:

340 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + . . . + βpxip > 0 if yi = 1, (9.6)

and

β0 + β1xi1 + β2xi2 + . . . + βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x
∗
1+β2x

∗
2+. . .+βpx

∗
p. If f(x∗) is positive,

then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other

or equivalently

340 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + . . . + βpxip > 0 if yi = 1, (9.6)

and

β0 + β1xi1 + β2xi2 + . . . + βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x
∗
1+β2x

∗
2+. . .+βpx

∗
p. If f(x∗) is positive,

then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other

4 / 23

Example
340 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + . . . + βpxip > 0 if yi = 1, (9.6)

and

β0 + β1xi1 + β2xi2 + . . . + βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x
∗
1+β2x

∗
2+. . .+βpx

∗
p. If f(x∗) is positive,

then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If
f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other

5 / 23

Maximal margin classifier

Margin: minimal distance between an observation to the hyperplane
342 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

X1

X
2

FIGURE 9.3. There are two classes of observations, shown in blue and in pur-
ple. The maximal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points and
the purple point that lie on the dashed lines are the support vectors, and the dis-
tance from those points to the hyperplane is indicated by arrows. The purple and
blue grid indicates the decision rule made by a classifier based on this separating
hyperplane.

support vectors, since they are vectors in p-dimensional space (in Figure 9.3,
support
vectorp = 2) and they “support” the maximal margin hyperplane in the sense

that if these points were moved slightly then the maximal margin hyper-
plane would move as well. Interestingly, the maximal margin hyperplane
depends directly on the support vectors, but not on the other observations:
a movement to any of the other observations would not affect the separating
hyperplane, provided that the observation’s movement does not cause it to
cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier

We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

6 / 23

Construction of the maximal margin classifier
9.1 Maximal Margin Classifier 343

(9.9)

subject to

p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M ∀ i = 1, . . . , n

guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be on
the correct side of the hyperplane we would simply need yi(β0 + β1xi1 +
β2xi2+. . .+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since
if β0 + β1xi1 + β2xi2 + . . . + βpxip = 0 defines a hyperplane, then so does
k(β0 +β1xi1 +β2xi2 + . . .+βpxip) = 0 for any k ̸= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0, β1, . . . , βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal
margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

maximize
β0,β1,...,βp

M
,M

Constraint:

The perpendicular distance from the ith observation to the
hyperplane is given by

9.1 Maximal Margin Classifier 343

(9.9)

subject to

p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M ∀ i = 1, . . . , n

guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be on
the correct side of the hyperplane we would simply need yi(β0 + β1xi1 +
β2xi2+. . .+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since
if β0 + β1xi1 + β2xi2 + . . . + βpxip = 0 defines a hyperplane, then so does
k(β0 +β1xi1 +β2xi2 + . . .+βpxip) = 0 for any k ̸= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0, β1, . . . , βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case

The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal
margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

maximize
β0,β1,...,βp

M
,M

These constraints ensure that each observation is on the correct side
of the hyperplane and at least a distance M from the hyperplane. M
is the margin of our hyperplane.

7 / 23

Maximal margin classifier is not robust

9.2 Support Vector Classifiers 345

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier,
support
vector
classifier

soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel
of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly

8 / 23

The non-separable case

344 9. Support Vector Machines

0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

X1

X
2

FIGURE 9.4. There are two classes of observations, shown in blue and in pur-
ple. In this case, the two classes are not separable by a hyperplane, and so the
maximal margin classifier cannot be used.

9.2 Support Vector Classifiers

9.2.1 Overview of the Support Vector Classifier

In Figure 9.4, we see that observations that belong to two classes are not
necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
separating hyperplane will necessarily perfectly classify all of the training
observations; this can lead to sensitivity to individual observations. An ex-
ample is shown in Figure 9.5. The addition of a single observation in the
right-hand panel of Figure 9.5 leads to a dramatic change in the maxi-
mal margin hyperplane. The resulting maximal margin hyperplane is not
satisfactory—for one thing, it has only a tiny margin. This is problematic
because as discussed previously, the distance of an observation from the
hyperplane can be seen as a measure of our confidence that the obser-
vation was correctly classified. Moreover, the fact that the maximal mar-
gin hyperplane is extremely sensitive to a change in a single observation
suggests that it may have overfit the training data.

In this case, we might be willing to consider a classifier based on a hy-
perplane that does not perfectly separate the two classes, in the interest of

9 / 23

Outline

1 9.1 – Maximal margin classifier

2 9.2 – Support vector classifiers

3 9.3 – Support vector machine

4 9.4 – SVMs with more than two classes

10 / 23

Support vector classifier

346 9. Support Vector Machines

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

11

12

X1X1

X
2

X
2

FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3, 4, 5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

(9.12)

subject to

p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,

n∑

i=1

ϵi ≤ C, (9.15)

where C is a nonnegative tuning parameter. As in (9.11), M is the width
of the margin; we seek to make this quantity as large as possible. In (9.14),
ϵ1, . . . , ϵn are slack variables that allow individual observations to be on

slack
variablethe wrong side of the margin or the hyperplane; we will explain them in

greater detail momentarily. Once we have solved (9.12)–(9.15), we classify
a test observation x∗ as before, by simply determining on which side of the
hyperplane it lies. That is, we classify the test observation based on the
sign of f(x∗) = β0 + β1x

∗
1 + . . . + βpx

∗
p.

The problem (9.12)–(9.15) seems complex, but insight into its behavior
can be made through a series of simple observations presented below. First
of all, the slack variable ϵi tells us where the ith observation is located,
relative to the hyperplane and relative to the margin. If ϵi = 0 then the ith

maximize
β0,β1,...,βp,ϵ1,...,ϵn

M
,M

Allow some observations to be on the incorrect side of the margin

Introduce slack variables ε1, . . . , εn.
I εi > 0 then the ith observation is on the wrong side of the margin
I εi > 1 then the ith observation is on the wrong side of the hyperplane

Tuning parameter C determines the number and severity of the
violations to the margin.

I For C > 0, no more than C observations can be on the wrong side of
the hyperplane.

I C is usually chosen by cross-validation.

11 / 23

Support vector classifier
346 9. Support Vector Machines

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

11

12

X1X1

X
2

X
2

FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3, 4, 5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

(9.12)

subject to

p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,

n∑

i=1

ϵi ≤ C, (9.15)

where C is a nonnegative tuning parameter. As in (9.11), M is the width
of the margin; we seek to make this quantity as large as possible. In (9.14),
ϵ1, . . . , ϵn are slack variables that allow individual observations to be on

slack
variablethe wrong side of the margin or the hyperplane; we will explain them in

greater detail momentarily. Once we have solved (9.12)–(9.15), we classify
a test observation x∗ as before, by simply determining on which side of the
hyperplane it lies. That is, we classify the test observation based on the
sign of f(x∗) = β0 + β1x

∗
1 + . . . + βpx

∗
p.

The problem (9.12)–(9.15) seems complex, but insight into its behavior
can be made through a series of simple observations presented below. First
of all, the slack variable ϵi tells us where the ith observation is located,
relative to the hyperplane and relative to the margin. If ϵi = 0 then the ith

maximize
β0,β1,...,βp,ϵ1,...,ϵn

M
,M

Only observations that either lie on the margin or that violate the
margin will affect the hyperplane, and therefore the classifier. These
observations are called support vectors.

12 / 23

348 9. Support Vector Machines

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.

The fact that the support vector classifier’s decision rule is based only
on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of
the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule

13 / 23

Nonlinear boundary

9.3 Support Vector Machines 349

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

X1X1

X
2

X
2

FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-
ary, and consequently performs very poorly.

depends on the mean of all of the observations within each class, as well as
the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.

9.3 Support Vector Machines

We first discuss a general mechanism for converting a linear classifier into
one that produces non-linear decision boundaries. We then introduce the
support vector machine, which does this in an automatic way.

9.3.1 Classification with Non-linear Decision Boundaries

The support vector classifier is a natural approach for classification in the
two-class setting, if the boundary between the two classes is linear. How-
ever, in practice we are sometimes faced with non-linear class boundaries.
For instance, consider the data in the left-hand panel of Figure 9.8. It is
clear that a support vector classifier or any linear classifier will perform
poorly here. Indeed, the support vector classifier shown in the right-hand
panel of Figure 9.8 is useless here.

In Chapter 7, we are faced with an analogous situation. We see there
that the performance of linear regression can suffer when there is a non-
linear relationship between the predictors and the outcome. In that case,
we consider enlarging the feature space using functions of the predictors,

14 / 23

Outline

1 9.1 – Maximal margin classifier

2 9.2 – Support vector classifiers

3 9.3 – Support vector machine

4 9.4 – SVMs with more than two classes

15 / 23

Classification with nonlinear decision boundaries

Incorporate quadratic features:

350 9. Support Vector Machines

such as quadratic and cubic terms, in order to address this non-linearity.
In the case of the support vector classifier, we could address the prob-
lem of possibly non-linear boundaries between classes in a similar way, by
enlarging the feature space using quadratic, cubic, and even higher-order
polynomial functions of the predictors. For instance, rather than fitting a
support vector classifier using p features

X1, X2, . . . , Xp,

we could instead fit a support vector classifier using 2p features

X1, X
2
1 , X2, X

2
2 , . . . , Xp, X

2
p .

Then (9.12)–(9.15) would become

(9.16)

subject to yi

⎛
⎝β0 +

p∑

j=1

βj1xij +

p∑

j=1

βj2x
2
ij

⎞
⎠ ≥M(1− ϵi),

n∑

i=1

ϵi ≤ C, ϵi ≥ 0,

p∑

j=1

2∑

k=1

β2
jk = 1.

Why does this lead to a non-linear decision boundary? In the enlarged
feature space, the decision boundary that results from (9.16) is in fact lin-
ear. But in the original feature space, the decision boundary is of the form
q(x) = 0, where q is a quadratic polynomial, and its solutions are gener-
ally non-linear. One might additionally want to enlarge the feature space
with higher-order polynomial terms, or with interaction terms of the form
XjXj′ for j ̸= j′. Alternatively, other functions of the predictors could
be considered rather than polynomials. It is not hard to see that there
are many possible ways to enlarge the feature space, and that unless we
are careful, we could end up with a huge number of features. Then compu-
tations would become unmanageable. The support vector machine, which
we present next, allows us to enlarge the feature space used by the support
vector classifier in a way that leads to efficient computations.

9.3.2 The Support Vector Machine

The support vector machine (SVM) is an extension of the support vector
support
vector
machine

classifier that results from enlarging the feature space in a specific way,
using kernels. We will now discuss this extension, the details of which are

kernel
somewhat complex and beyond the scope of this book. However, the main
idea is described in Section 9.3.1: we may want to enlarge our feature space

maximize
β0,β11,β12....,βp1,βp2,ϵ1,...,ϵn

M
,M

350 9. Support Vector Machines

such as quadratic and cubic terms, in order to address this non-linearity.
In the case of the support vector classifier, we could address the prob-
lem of possibly non-linear boundaries between classes in a similar way, by
enlarging the feature space using quadratic, cubic, and even higher-order
polynomial functions of the predictors. For instance, rather than fitting a
support vector classifier using p features

X1, X2, . . . , Xp,

we could instead fit a support vector classifier using 2p features

X1, X
2
1 , X2, X

2
2 , . . . , Xp, X

2
p .

Then (9.12)–(9.15) would become

(9.16)

subject to yi

⎛
⎝β0 +

p∑

j=1

βj1xij +

p∑

j=1

βj2x
2
ij

⎞
⎠ ≥M(1− ϵi),

n∑

i=1

ϵi ≤ C, ϵi ≥ 0,

p∑

j=1

2∑

k=1

β2
jk = 1.

Why does this lead to a non-linear decision boundary? In the enlarged
feature space, the decision boundary that results from (9.16) is in fact lin-
ear. But in the original feature space, the decision boundary is of the form
q(x) = 0, where q is a quadratic polynomial, and its solutions are gener-
ally non-linear. One might additionally want to enlarge the feature space
with higher-order polynomial terms, or with interaction terms of the form
XjXj′ for j ̸= j′. Alternatively, other functions of the predictors could
be considered rather than polynomials. It is not hard to see that there
are many possible ways to enlarge the feature space, and that unless we
are careful, we could end up with a huge number of features. Then compu-
tations would become unmanageable. The support vector machine, which
we present next, allows us to enlarge the feature space used by the support
vector classifier in a way that leads to efficient computations.

9.3.2 The Support Vector Machine

The support vector machine (SVM) is an extension of the support vector
support
vector
machine

classifier that results from enlarging the feature space in a specific way,
using kernels. We will now discuss this extension, the details of which are

kernel
somewhat complex and beyond the scope of this book. However, the main
idea is described in Section 9.3.1: we may want to enlarge our feature space

maximize
β0,β11,β12....,βp1,βp2,ϵ1,...,ϵn

M
,M

How to enlarge the space of features?

16 / 23

Using inner product
Inner product:

9.3 Support Vector Machines 351

in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . , αn and β0, all we need are the(
n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(
n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the
representation (9.18), or in a calculation of the solution for the support

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

9.3 Support Vector Machines 351

in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . , αn and β0, all we need are the(
n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(
n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the
representation (9.18), or in a calculation of the solution for the support

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

Linear support vector machine:

9.3 Support Vector Machines 351

in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . , αn and β0, all we need are the(
n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(
n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the
representation (9.18), or in a calculation of the solution for the support

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

where there are n parameters αi , i = 1, . . . , n, one per training observation.

9.3 Support Vector Machines 351

in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . , αn and β0, all we need are the(
n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(
n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the
representation (9.18), or in a calculation of the solution for the support

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

17 / 23

Support vector machine

Evaluate f (x):

9.3 Support Vector Machines 351

in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as ⟨a, b⟩ =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

⟨xi, xi′⟩ =
p∑

j=1

xijxi′j . (9.17)

It can be shown that

• The linear support vector classifier can be represented as

f(x) = β0 +

n∑

i=1

αi⟨x, xi⟩, (9.18)

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . , αn and β0, all we need are the(
n
2

)
inner products ⟨xi, xi′⟩ between all pairs of training observations.

(The notation
(
n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi⟨x, xi⟩, (9.19)

which typically involves far fewer terms than in (9.18).2

To summarize, in representing the linear classifier f(x), and in computing
its coefficients, all we need are inner products.

Now suppose that every time the inner product (9.17) appears in the
representation (9.18), or in a calculation of the solution for the support

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

Summary: all we need are inner products.

18 / 23

From inner product to kernel
Kernel:

352 9. Support Vector Machines

vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =

p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +

p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ

p∑

j=1

(xij − xi′j)
2). (9.24)

The linear kernel giving support vector classifier:

352 9. Support Vector Machines

vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =

p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +

p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ

p∑

j=1

(xij − xi′j)
2). (9.24)

Polynomial kernel of degree d :

352 9. Support Vector Machines

vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =

p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +

p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ

p∑

j=1

(xij − xi′j)
2). (9.24)

Radial kernel:

352 9. Support Vector Machines

vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =

p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +

p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ

p∑

j=1

(xij − xi′j)
2). (9.24)

19 / 23

Support vector machine
Classification function:

352 9. Support Vector Machines

vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)

where K is some function that we will refer to as a kernel. A kernel is a
kernel

function that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =

p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +

p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive
polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector
classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form

radial kernel

K(xi, xi′) = exp(−γ

p∑

j=1

(xij − xi′j)
2). (9.24)

9.3 Support Vector Machines 353

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4
−4

−2
0

2
4

X1X1

X
2

X
2

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows
an example of an SVM with a radial kernel on this non-linear data; it also
does a good job in separating the two classes.

How does the radial kernel (9.24) actually work? If a given test obser-
vation x∗ = (x∗

1 . . . x∗
p)

T is far from a training observation xi in terms of
Euclidean distance, then

∑p
j=1(x

∗
j −xij)

2 will be large, and so K(xi, xi′) =

exp(−γ
∑p

j=1(x
∗
j − xij)

2) will be very tiny. This means that in (9.23), xi

will play virtually no role in f(x∗). Recall that the predicted class label
for the test observation x∗ is based on the sign of f(x∗). In other words,
training observations that are far from x∗ will play essentially no role in
the predicted class label for x∗. This means that the radial kernel has very
local behavior, in the sense that only nearby training observations have an
effect on the class label of a test observation.

What is the advantage of using a kernel rather than simply enlarging
the feature space using functions of the original features, as in (9.16)? One
advantage is computational, and it amounts to the fact that using kernels,
one need only compute K(xi, xi′) for all

(
n
2

)
distinct pairs i, i′. This can be

done without explicitly working in the enlarged feature space. This is im-
portant because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, such as the
radial kernel (9.24), the feature space is implicit and infinite-dimensional,
so we could never do the computations there anyway!

20 / 23

Outline

1 9.1 – Maximal margin classifier

2 9.2 – Support vector classifiers

3 9.3 – Support vector machine

4 9.4 – SVMs with more than two classes

21 / 23

SVMs with multiple classes

One-versus-one classification
I K classes: run SVM

(
K
2

)
times for all pairs

I The final classification is performed by assigning the test observation to
the class to which it was most frequently assigned in these

(
K
2

)
pairwise

classification

One-versus-all classification

356 9. Support Vector Machines

SVMs, each of which compares a pair of classes. For example, one such
SVM might compare the kth class, coded as +1, to the k′th class, coded
as −1. We classify a test observation using each of the

(
K
2

)
classifiers, and

we tally the number of times that the test observation is assigned to each
of the K classes. The final classification is performed by assigning the test
observation to the class to which it was most frequently assigned in these(
K
2

)
pairwise classifications.

9.4.2 One-Versus-All Classification

The one-versus-all approach is an alternative procedure for applying SVMs one-versus-
allin the case of K > 2 classes. We fit K SVMs, each time comparing one of

the K classes to the remaining K − 1 classes. Let β0k, β1k, . . . , βpk denote
the parameters that result from fitting an SVM comparing the kth class
(coded as +1) to the others (coded as −1). Let x∗ denote a test observation.
We assign the observation to the class for which β0k +β1kx∗

1 +β2kx∗
2 + . . .+

βpkx∗
p is largest, as this amounts to a high level of confidence that the test

observation belongs to the kth class rather than to any of the other classes.

9.5 Relationship to Logistic Regression

When SVMs were first introduced in the mid-1990s, they made quite a
splash in the statistical and machine learning communities. This was due
in part to their good performance, good marketing, and also to the fact
that the underlying approach seemed both novel and mysterious. The idea
of finding a hyperplane that separates the data as well as possible, while al-
lowing some violations to this separation, seemed distinctly different from
classical approaches for classification, such as logistic regression and lin-
ear discriminant analysis. Moreover, the idea of using a kernel to expand
the feature space in order to accommodate non-linear class boundaries ap-
peared to be a unique and valuable characteristic.

However, since that time, deep connections between SVMs and other
more classical statistical methods have emerged. It turns out that one can
rewrite the criterion (9.12)–(9.15) for fitting the support vector classifier
f(X) = β0 + β1X1 + . . . + βpXp as

minimize
β0,β1,...,βp

⎧
⎨
⎩

n∑

i=1

max [0, 1− yif(xi)] + λ

p∑

j=1

β2
j

⎫
⎬
⎭ , (9.25)

22 / 23

Reference

Chapter 9: James, Gareth, Daniela Witten, Trevor Hastie and Robert
Tibshirani, An introduction to statistical learning. Vol. 112, New York:
Springer, 2013

23 / 23

	9.1 – Maximal margin classifier
	9.2 – Support vector classifiers
	9.3 – Support vector machine
	9.4 – SVMs with more than two classes

