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© 9.1 — Maximal margin classifier
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What is a hyperplane?

Bo+ B1X1 + feXo+ ...+ BpXp =0
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FIGURE 9.1. The hyperplane 1 + 2X1 4+ 3X2 = 0 ts shown. The blue region is
the set of points for which 1+ 2X1 4+ 3X2 > 0, and the purple region is the set of
points for which 1+ 2X; +3X2 < 0.
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Classification using a separating hyperplane

Data matrix: X € R"*P

T Tnl
T = yeey Ty =

T1p Tnp

Separating hyperplane:

Bo + Brxi1 + Paziz + ...+ Bpxip > 0if y =1,

Bo + Bizin + Baxia + ...+ Bpxip < 0if y; = —1.

or equivalently

yi(Bo + Prrin + Boio + ... + Bpxip) >0
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Example

X1

FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.
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Maximal margin classifier

Margin: minimal distance between an observation to the hyperplane

FIGURE 9.3. There are two classes of observations, shown in blue and in pur-
ple. The mazimal margin hyperplane is shown as a solid line. The margin is the
distance from the solid line to either of the dashed lines. The two blue points and
the purple point that lie on the dashed lines are the support vectors, and the dis-
tance from those points to the hyperplane is indicated by arrows. The purple and
blue grid indicates the decision rule made by a classifier based on this separating
hyperplane.
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Construction of the maximal margin classifier

maximize M
BosB1y-Bp M

P
subject to Z,BJZ =1,

=1
yi(ﬁo+ﬂ1l‘i1 + Boxio +.,,+Bpxip) >M Vi=1,...,n.

Constraint:
@ The perpendicular distance from the ith observation to the
hyperplane is given by
¥i(Bo + Brxir + Pazio + ... + Bpip).
@ These constraints ensure that each observation is on the correct side

of the hyperplane and at least a distance M from the hyperplane. M
is the margin of our hyperplane.
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Maximal margin classifier is not robust
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FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the mazimal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the mazimal margin
hyperplane shown as a solid line. The dashed line indicates the mazimal margin
hyperplane that was obtained in the absence of this additional point.
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The non-separable case
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FIGURE 9.4. There are two classes of observations, shown in blue and in pur-
ple. In this case, the two classes are not separable by a hyperplane, and so the
mazimal margin classifier cannot be used.
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Outline

© 9.2 - Support vector classifiers

10/23



Support vector classifier

maximize M
BosB1se-sBpr€1yees€n, M

p
subject to Zﬂf =1,

i=1
Yi(Bo + Przir + Bawiz + ... + Bpxip) > M(1 — €),

n

51’,207 ZQSC

i=1

@ Allow some observations to be on the incorrect side of the margin

@ Introduce slack variables €1, ..., €,.
> ¢; > 0 then the ith observation is on the wrong side of the margin
> ¢; > 1 then the ith observation is on the wrong side of the hyperplane

@ Tuning parameter C determines the number and severity of the
violations to the margin.
» For C > 0, no more than C observations can be on the wrong side of
the hyperplane.

» C is usually chosen by cross-validation.
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Support vector classifier
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FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3,4,5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

@ Only observations that either lie on the margin or that violate the
margin will affect the hyperplane, and therefore the classifier. These
observations are called support vectors.
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FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)-(9.15). The largest value of C' was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C' is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C' decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.
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Nonlinear boundary
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FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-
ary, and consequently performs very poorly.
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Outline

© 9.3 - Support vector machine
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Classification with nonlinear decision boundaries

Incorporate quadratic features:

XlaX12’X27X22a s 7Xp7X;3'

maximize M
Bo,B11,812----,8p1,8p2,€1;--s€n, M

p p
subject to y; ﬁo + Z ﬂjll‘i]‘ + Z 6j2x?j > M(l — 61')

Jj=1 Jj=1
n P 2
)IEETIETES 3) 3 A1
i=1 j=1k=1

How to enlarge the space of features?
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Using inner product
Inner product:

<CL b) = Z?‘Ll albz
-Tza xz Z ng ey J

Linear support vector machine:

f(@) =B+ Z iz, ;) (9.18)
i=1
where there are n parameters a;,i = 1,..., n, one per training observation.
To estimate the parameters ai,...,a, and [y, all we need are the

(g) inner products (z;, x;/) between all pairs of training observations.

(The notation (%) means n(n —1)/2, and gives the number of pairs
among a set of n items.)
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Support vector machine

Evaluate f(x):

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point  and each of the training
points x;. However, it turns out that «; is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its «; equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f@) = Bo+ Y ailw,zi), (9.19)
€S

which typically involves far fewer terms than in (9.18).2

Summary: all we need are inner products.

18/23



From inner product to kernel
Kernel:

K(zi,xy),

The linear kernel giving support vector classifier:

wuxz qumz K
Polynomial kernel of degree d:
p
K(xi,xi/) = (]. + Zmijflji/j)d
Radial kernel:

p
K (s, xir) = exp(=7 Y (wij — wir5)°
Jj=1
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Support vector machine
Classification function:

f(z)= 6o+ ZaiK(x,a:i).

i€S

Xy

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision

rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.
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Outline

@ 9.4 — SVMs with more than two classes
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SVMs with multiple classes

@ One-versus-one classification

» K classes: run SVM (’2() times for all pairs

» The final classification is performed by assigning the test observation to
the class to which it was most frequently assigned in these (%) pairwise
classification

@ One-versus-all classification

The one-versus-all approach is an alternative procedure for applying SVMs
in the case of K > 2 classes. We fit K SVMs, each time comparing one of
the K classes to the remaining K — 1 classes. Let Sok, Bik, - - -, Bpr denote
the parameters that result from fitting an SVM comparing the kth class
(coded as +1) to the others (coded as —1). Let z* denote a test observation.
We assign the observation to the class for which fBoi + S1ka] + oy +. ..+
Bpky is largest, as this amounts to a high level of confidence that the test
observation belongs to the kth class rather than to any of the other classes.
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