Chapter 8 — Tree-Based Methods

Wenjing Liao

School of Mathematics
Georgia Institute of Technology

Math 4803
Fall 2019



Outline

© 8.1.1 — Regression trees
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Predict the log salary of a baseball player

Years < 4.5
t

Hits <

6.00

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form X; < ty) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to X; > ty.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations

that fall there.

1175

6.74

3/25



Regions of partition
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FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

Ri = {X|Years < 4.5}, Y = $1,000 x 5197 = 165,174
R> = {X|Years > 4.5, Hits < 117.5}, Y = $1,000 x €599 = 402, 834
Rs; = {X|Years > 4.5, Hits > 117.5}, Y = $1,000 x %740 = 845,346
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Prediction via stratification of the feature space

1. We divide the predictor space—that is, the set of possible values for
X1,Xs,...,X,—into J distinct and non-overlapping regions,
Ri,Ro,...,Rj.

2. For every observation that falls into the region R;, we make the same
prediction, which is simply the mean of the response values for the
training observations in R;.

How to construct the regions Ry,...,R,?
J
> D =)’
j=1iER,

where Jg is the mean response for the training data within the jth box.
@ The optimization above is computationally infeasible.
@ Instead we take a top-down, greedy approach that known as recursive
binary splitting.
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Recursive binary splitting

© Define the pair of half planes
Ri(j.s) = {X|X; < s} and Ru(j,s) = {X|X; > s}

@ Seek the value of j and s that minimizes the equation
N 2 ~ 2
Yo Wik D, Wi i)
it ;€ R1(4,8) i x;€R2(4,8)

where yr, is the mean response for the training data in Ri(j,s), and
VR, is the mean response for the training data in Ra(j, s)

Repeat this process, looking for the best predictor and best cutpoint in
order to split the data further so as to minimize the RSS within each of
the resulting regions.
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Example

Ry b

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional ezample. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot) of the
prediction surface corresponding to that tree.
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Tree pruning

@ Pruning is to avoid overfitting to the training data.

@ How to prune the tree? — select a subtree that leads to the lowest
test error.

Cost complexity pruning: For each tuning parameter o > 0, find a
subtree T C Ty such that

17|

Z Z yRm ‘|‘04|T’

m=14: x;ER,

is as small as possible. Here | T| indicates the number of terminal nodes in
T, and R, is the rectangle corresponding to the mth terminal node.

@ Whenaa=0, T = Ty;

@ As « increases, the minimizer tend to be a smaller subtree.
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Building a regression tree

Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of a.

3. Use K-fold cross-validation to choose a. That is, divide the training
observations into K folds. For each k =1,..., K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of a.

Average the results for each value of «, and pick o to minimize the

average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of a.
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Example: the unpruned tree for the Hitters data

Years < 4.5
T
RBI 460.5 Hits <|117.5
Pu(ou‘s <82 Years|< 3.5
| Years|< 3.5
5.487 5394 6189
4622 5183
Walks |< 43.5 Walks |< 52.5
Runs [ 47.5 ‘ RBI 4805
6.407 Years[<65
6015 5571 6549 = 7289
6459  7.007

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.
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Pruning

@ 132 observations for training and 131 observations for test;

o Build a large tree on training data and prune the tree with varied «;

@ Perform six-fold cross validation as a function of «.
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FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.
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Outline

© 8.1.2 - Classification trees
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How to predict?

Prediction rule: Each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

Classification error rate: the fraction of the training observations in that
region that do not belong to the most common class

E=1- m]?x(ﬁmk)

where P, represents the proportion of training observations in the mth
region that are from the kth class.

@ The classification error is not sufficiently sensitive for tree-growing.
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Preferable criterion for the error

Gini index:

K
G = Pmr(l = pm)
k=1

@ |t measures the total variance across the K classes.
@ The Gini index is small if all of the p,,«'s are close to 0 or 1 — a small
value indicates that a node contains predominantly observations from

a single class.

Entropy:

K
D == pmk10g
k=1

0 0<pmk < 1:>_ﬁmk|0gﬁmk20

@ —Pmk log Pmk is small if p,i is close to 0 or 1 — the mth node is pure.
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Build a classification tree

Training:
@ Binary splitting
o Evaluate the quality of a particular split by the Gini index or entropy.
@ Pruning the tree with the Gini index or entropy.

Prediction accuracy on test data: use the classification error rate
An example: Heart data

@ a binary outcome “HD" for 303 patients

@ 13 predictors including “age”, “sex", “chol”
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FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal“ére lidati
error.

16 /25



8.1.3 - Tree versus linear models

Linear regression:

p
FX)=Bo+ > X8,

Jj=1
@ Linear regression works well if the relation between the response and

the predictors are linear.

Regression tree:

M
FX) =D em-Lixen,)
m=1
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Example
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FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the azes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).



Outline

© 3.2 - Bagging, random forests and boosting
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Basics

High variance: if we split the training data into two parts at random and
fit a tree to both halves, the results could be quite different.

Average: average multiple training results
B
j;vg = E§ 2{: f

where 1(x), ..., FB(x) are calculated via B separate training sets.

Bagging:
A 1B
Fong(@) = 5 > F*(@).

where each f*b(x) is built on a subset of the training data.

Bagging for classification problems: take a majority vote — the overall

prediction is the most commonly occurring class among the B predictors.
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Variance important measures
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FIGURE 8.9. A wvariable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the mazimum.
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Random forests

Splitting: Each time a random sample of m predictors is chosen as split
candidates from the full set of p predictors.

m=./p

Improvements:

o If there is a strong predictor, all bagged trees will use this strong
predictor at the top split, making all bagged trees high correlated.

@ Random forests consider m predictors at a time, and the other p — m
ones are not used at all.

Decorrelating the trees
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Choice of m
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FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7%.
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How many trees?
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FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m = /p. The dashed line
indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.
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