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Polynomial regression

Linear function: y; = By + B1x; + €;

Polynomial function:
Yi = Bo + Brai + Pox? + Bsad + ... + Baxl + €5,
Logistic regression using polynomials:

Pr(y; > 250|z;) = exp(Bo + B2 + Box? + ... + Baxd)
Z Y 14 exp(Bo + i + Par? + ..+ Baxd)
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Example
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dotted curves indicate an estimated 95 % confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95 % confidence interval.
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Regression using indicator functions

Indicator functions:

CO(X) = I(X < 61),

C1(X) = I(c1 £ X <),
Co(X) = I(c2 < X <e3),
CK_]_(X) = I(CK-lSX<CK)7
CK(X) = I(CK SX),

Regression:

yi = Bo + B1C1 (i) + f2Ca(ws) + ... + Br Cr (i) + €;.

Logistic regression:

exp(Bo + B1C1(z;) + ... + BrCk (1))

Pr(y: > 250(z:) = = exp(Bo + A1C1(7:) + - + BxCr (z7))
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dotted curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.
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Regression using basis functions

Basis functions: by(+),..., bk(+)

Regression using basis functions:
yi = Bo + Bibi(wi) + Baba(z:) + Babs(wi) +

Popular basis:
@ Polynomials

o Fourier basis
@ Wavelet basis

@ Splines

ot ,BKbK(l‘i) + €;.
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Q@ 7.4 - Splines
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7.4.1 — Piecewise polynomials

Cubic polynomial:
yi = Bo + Brx; + Boxi + B3zl + €,

Piecewise polynomial with a single knot at c:

_ Bo1 + Br1xi + B212? + Ba1xd + e if ;i < ¢
' Boz + B12xi + Pa2x? + Baexd + ¢ if 1; > c.

Constraints:
@ f is continuous

e f', f", ... are continuous
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Example
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage
data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to
have continuous first and second derivatives. Bottom Right: A linear spline is
shown, which is constrained to be continuous.
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Piecewise linear

Piecewise Constant Piecewise Linear
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some

artificial data. The broken vertical lines indicate the positions of the two knots

&1 and &. The blue curve represents the true function, from which the data were

generated with Gaussian noise. The remaining two panels show piecewise lin-

ear functions fit to the same data—the top right unrestricted, and the lower left

restricted to be continuous at the knots. The lower right panel shows a piecewise—

linear basis function, h3(X) = (X — &)+, continuous at & . The blackipoints = — 1PN G4
indicate the sample evaluations hs(z;), i=1,...,N. 13 / 33



Piecewise cubic polynomials
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of

Do
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7.4.1 — The spline basis representation

General model: Fit a piecewise degree d polynomial under the constraint

that its first d — 1 derivatives are continuous

Cubic spline: K knots at &1, ...,¢k
yi = Bo + Bibi(w) + Baba(zs) + - - + Prabra(xi) + €,

Truncated power basis:

_B if
h(x,&) = (r — f)i = { (@ 05) 1otﬁengise,

Basis functions for cubic spline:

17X,X27X37 h(X7§1)7 h(X7§2)7 sy h(X7§K)
Coefficients: By, ..., Bk+3, degree of freedom = K 44
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Natural cubic spline

Natural cubic spline: is a regression spline with additional boundary
constraints: for example, the function is linear at the boundary

Degree of freedom: K

Example:
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data.
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7.4.4 — Choosing the number and locations of the knots
Questions:
@ Where should we place the knots? — Adaptive methods

@ How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? — Cross validation
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage
and the predictor age. Left: A natural cubic spline. Right: A cubic spline.
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7.4.5 — Spline and polynomial regression

@ Splines are more flexible and stable

@ Polynomials may have the Runge phenomenon.
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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.
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© 7.5 - Smoothing splines
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Regularization

RSS(/. ) = Z{Zh @)+ A (@,

A : a smoothing parameter

@ A =0: f can be any function that interpolates the data

@ )\ = oo : will obtain a line such that f/ =0

Solution: See Exercise 5.7 in the book “The elements of statistical
learning "
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Exercise 5.7 in “The elements of statistical learning "

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Sup-
pose that N > 2, and that g is the natural cubic spline interpolant to the
pairs {z;, 2}, with @ < 2; < --- < 2 < b. This is a natural spline

with a knot at every z;; being an N-dimensional space of functions, we can
determine the coefficients such that it interpolates the sequence z; exactly.
Let g be any other differentiable function on [a, b] that interpolates the N
pairs.

(a) Let h(z) = g(z) — g(x). Use integration by parts and the fact that g is

a natural cubic spline to show that
N-1

= > ¢ @) {hleyn) - hlz)} (5.72)

J=1

b
/ 9" (x)n" (z)dx
= 0.

(b) Hence show that

b b
/g”(t)zdtz/g"(t)zdt,

a
and that equality can only hold if h is identically zero in [a, b].
(c) Consider the penalized least squares problem
N b
min [Z(y, — @)+ A / f”(t)zdt] .
i=1 a

Use (b) to argue that the minimizer must be a cubic spline with knots
at each of the z;.
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How to find the cubic spline?
Basis expansion:

Define matrix: {N}; = N;(x;) and {2n} = [ N/ ()N} (t)dt
RSS(/, \) Z{yz (@) + A [ {70,
is equivalent to
RSS(4,)\) = (y — NO)T (y — NO) + 207 Q 0,
Solution:
0= (NTN + M2y) " 'NTy,

Degree of freedom: = the number of coefficients
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Example
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with A = 0.00022. This choice corresponds to

about 12 degrees of freedom.
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7.5.2 — Choosing the smoothing parameter \

f : the N-vector of fitted values 7(x;) at the training points {x N,

f = N(N'N+\Qy) 'NTy
= Syy.

Smoother matrix: S
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An example of the smoother matrix

Equivalent Kernels

Row 12

Smoother Matrix Row 25

FIGURE 5.8. The smoother matriz for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
ing function in detail for the indicated rows.
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How to choose \?
Effective degree of freedom: the sum of diagonals of S

30

20

Ozone Concentration

10

How to choose \?

dfy = trace(Sy),

Red: dfy = 5; Green: df\, =11

-50 0 50 100

Daggot Pressure Gradient

Cross validation.
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Example

Y = f(X) +2,
_ sin(12(X +0.2))
I0="FT0

X ~U[0,1] and e ~ N(0,1)
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Cross-Validation dfy =5

EPE()) and CV())

FIGURE 5.9. The top left panel shows the EPE(X) and CV(X) curves for a
realization from a nonlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded +2x standard error bands, for three different valuescof df, .
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@ Multidimensional splines
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Tensor product basis

2D splines: X € R?
e Basis functions of coordinate Xi: hy x(X1),k=1,..., M
e Basis functions of coordinate Xa: hy x(X2), k =1,..., M>

Tensor product basis:

gik(X) = h1j(X1)hon(Xo), j=1,..., My, k=1,..., M,

To represent functions:
My M

9(X) =3 Oirgn(X).

j=1k=1
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FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.

Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.
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Smoothing splines in two dimensions

m}n Z{yz — flz) ¥+ N[f],

=] L) w2 ()« () Yoo

@ As A — 0, the solution approaches an interpolating function

@ As A\ — 00, the solution approaches the least squares plane
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