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Outline

© 6.1 — One-dimensional kernel smoothers
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From kNN to kernel regression

k-nearest-neighbor average:

f(x) = Ave(y;|zi € Ni())

where Ny (x) is the set of k training points nearest to x.

Does a weighted average work better?
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kNN and a weighted average
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FIGURE 6.1. In each panel 100 pairs x;, y; are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)4¢, X ~ U[0,1], e ~ N(0,1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f(a:g), and the red circles indicate
those observations contributing to the fit at xo. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
A=0.2.
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Weighted average

Kernel weighted average

N Ka(o, wi)ys
Jwo) = Zil Kx(zo,2;)

Kateosa) = 0 (25200

31 —1) ifft] <1

D(t) = { 0 otherwise.

More generally

Kx(xo,z) =D (f;(xi(;') .

@ hy(x0) = A above
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About kernel average

© The smoothing parameter A, which determines the width of the local
neighborhood, has to be determined.

@ Boundary issue arises. The neighborhoods tend to contain less points
on the boudaries.

© Issues arise with nearest-neighbors when there are ties in the x;. With
most smoothing kernel techniques one can reduce the data set by
averaging the y; at tied values of X.

© There is a rich class of kernels.

tri-cube function

_ [ A=P)? <1
D(t) = { 0 otherwise

6/18



Popular kernels
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-

nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.
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6.1.1 — Local linear regression

min ZKA 20, %) [yi — alzo) — Blzo)wi]” .

a(zo),8(xo0)

Estimator: 7(x) = &(x0) + 3(x0)xo

How to solve it? Let b(x)T = (1,x) € R1*2, B € RN*2 be the
regression matrix with ith row b(x;)7, and W € RV*N be the diagonal
matrix with ith diagonal element K)(xo, x;). Then

f(xo) = b(zo)" (BTW(z0)B) 'B"W(zo)y
N

= Zli(xo)yzw

i=1
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Example

N-W Kernel at Boundary Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target

point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.
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Weight /;(xo)

Local Linear Equivalent Kernel at Boundary

Local Linear Equivalent Kernel in Interior
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FIGURE 6.4. The green points show the equivalent kernel l;(zo) for local re-
gression. These are the weights in f(xo) = > i 1 li(wo)yi, plotted against their
corresponding x;. For display purposes, these have been rescaled, since in fact
they sum to 1. Since the yellow shaded region is the (rescaled) equivalent kernel
for the Nadaraya—Watson local average, we see how local regression automati-
cally modifies the weighting kernel to correct for biases due to asymmetry in the

smoothing window.
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Why from linear to quadratic?

Local Linear in Interior

Local Quadratic in Interior
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true

Sfunction. Local quadratic fits tend to eliminate this bias.
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6.1.2 — Local polynomial regression

N d
min ZK,\(IO,%) yi — awo) — ZBJ(IO)

a(zo),Bj(x0), j=1,....d =

Estimator: f(xo) = a(x) + 27:1 Bj(xo)xé

Moving to higher order polynomials
@ Bias is reduced.

@ Variance will increase.
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Outline

© 6.2 — Selecting the width of the kernel
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Width of the kernel

e For the Epanechnikov or tri-cube kernel with metric width, A is the
radius of the support region.

e For the Gaussian kernel, A is the standard deviation.

e )\ is the number %k of nearest neighbors in k-nearest neighborhoods,
often expressed as a fraction or span k/N of the total training sample.

e [f the window is narrow, f (z0) is an average of a small number of y;
close to xp, and its variance will be relatively large—close to that of
an individual y;. The bias will tend to be small, again because each
of the E(y;) = f(x;) should be close to f(x).

o If the window is wide, the variance of f(zo) will be small relative to
the variance of any y;, because of the effects of averaging. The bias
will be higher, because we are now using observations x; further from
xo, and there is no guarantee that f(z;) will be close to f(zo).

Solution: cross-validation
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Outline

© Local regression in RP
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Kernel regression in R”
Let b(X) be a vector of polynomial terms in X of maximum degree d.

d=0= b(X)=(1)
d= 1.p=2= b(X) = (1,X1,X2)
d=2p=2= b(X)=(1,X1, Xz, X, X3, X1 X2)
At each xp € RP, one solves

N
min 37 K (a0, 2:)(ys — b(a) " Bx0))’
o i=1

to produce the fit £(xp) = b(x0)" B(x0)

Typical kernel:

K(z0,7) = D <!:c—Aon)
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Example

Velocity Velocity
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FIGURE 6.8. The left panel shows three-dimensional data, where the response
is the velocity measurements on a galazy, and the two predictors record positions
on the celestial sphere. The unusual “star”-shaped design indicates the way the
measurements were made, and results in an extremely irreqular boundary. The
right panel shows the results of local linear regression smoothing in IR?, using a
nearest-neighbor window with 15% of the data.
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