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From kNN to kernel regression

k-nearest-neighbor average:

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

where Nk(x) is the set of k training points nearest to x .

Does a weighted average work better?
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kNN and a weighted average
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted
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Weighted average

Kernel weighted average
6.1 One-Dimensional Kernel Smoothers 193

average

f̂(x0) =

∑N
i=1 Kλ(x0, xi)yi∑N
i=1 Kλ(x0, xi)

, (6.2)

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D

( |x− x0|
λ

)
, (6.3)

with

D(t) =

{
3
4 (1− t2) if |t| ≤ 1;
0 otherwise.

(6.4)

The fitted function is now continuous, and quite smooth in the right panel
of Figure 6.1. As we move the target from left to right, points enter the
neighborhood initially with weight zero, and then their contribution slowly
increases (see Exercise 6.1).

In the right panel we used a metric window size λ = 0.2 for the kernel
fit, which does not change as we move the target point x0, while the size
of the 30-nearest-neighbor smoothing window adapts to the local density
of the xi. One can, however, also use such adaptive neighborhoods with
kernels, but we need to use a more general notation. Let hλ(x0) be a width
function (indexed by λ) that determines the width of the neighborhood at
x0. Then more generally we have

Kλ(x0, x) = D

( |x− x0|
hλ(x0)

)
. (6.5)

In (6.3), hλ(x0) = λ is constant. For k-nearest neighborhoods, the neigh-
borhood size k replaces λ, and we have hk(x0) = |x0 − x[k]| where x[k] is
the kth closest xi to x0.

There are a number of details that one has to attend to in practice:

• The smoothing parameter λ, which determines the width of the local
neighborhood, has to be determined. Large λ implies lower variance
(averages over more observations) but higher bias (we essentially as-
sume the true function is constant within the window).

• Metric window widths (constant hλ(x)) tend to keep the bias of the
estimate constant, but the variance is inversely proportional to the
local density. Nearest-neighbor window widths exhibit the opposite
behavior; the variance stays constant and the absolute bias varies
inversely with local density.

• Issues arise with nearest-neighbors when there are ties in the xi. With
most smoothing techniques one can simply reduce the data set by
averaging the yi at tied values of X, and supplementing these new
observations at the unique values of xi with an additional weight wi

(which multiples the kernel weight).
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More generally
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• The smoothing parameter λ, which determines the width of the local
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sume the true function is constant within the window).

• Metric window widths (constant hλ(x)) tend to keep the bias of the
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(which multiples the kernel weight).

hλ(x0) = λ above
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About kernel average

1 The smoothing parameter λ, which determines the width of the local
neighborhood, has to be determined.

2 Boundary issue arises. The neighborhoods tend to contain less points
on the boudaries.

3 Issues arise with nearest-neighbors when there are ties in the xi . With
most smoothing kernel techniques one can reduce the data set by
averaging the yi at tied values of X .

4 There is a rich class of kernels.

tri-cube function
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

• This leaves a more general problem to deal with: observation weights
wi. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to

∑
wi). In the event of overflow (the last observation

needed in a neighborhood has a weight wj which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

• Boundary issues arise. The metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

• The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =

{
(1− |t|3)3 if |t| ≤ 1;
0 otherwise

(6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density func-
tion D(t) = φ(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3 (left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,
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Popular kernels
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6.1.1 – Local linear regression
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Estimator: f̂ (x0) = α̂(x0) + β̂(x0)x0

How to solve it? Let b(x)T = (1, x) ∈ R1×2, B ∈ RN×2 be the
regression matrix with ith row b(xi )

T , and W ∈ RN×N be the diagonal
matrix with ith diagonal element Kλ(x0, xi ). Then
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the
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FIGURE 6.4. The green points show the equivalent kernel li(x0) for local re-
gression. These are the weights in f̂(x0) =

∑N
i=1 li(x0)yi, plotted against their

corresponding xi. For display purposes, these have been rescaled, since in fact
they sum to 1. Since the yellow shaded region is the (rescaled) equivalent kernel
for the Nadaraya–Watson local average, we see how local regression automati-
cally modifies the weighting kernel to correct for biases due to asymmetry in the
smoothing window.

yi (the li(x0) do not involve y). These weights li(x0) combine the weight-
ing kernel Kλ(x0, ·) and the least squares operations, and are sometimes
referred to as the equivalent kernel. Figure 6.4 illustrates the effect of lo-
cal linear regression on the equivalent kernel. Historically, the bias in the
Nadaraya–Watson and other local average kernel methods were corrected
by modifying the kernel. These modifications were based on theoretical
asymptotic mean-square-error considerations, and besides being tedious to
implement, are only approximate for finite sample sizes. Local linear re-
gression automatically modifies the kernel to correct the bias exactly to
first order, a phenomenon dubbed as automatic kernel carpentry. Consider
the following expansion for Ef̂(x0), using the linearity of local regression
and a series expansion of the true function f around x0,

Ef̂(x0) =
N∑

i=1

li(x0)f(xi)

= f(x0)

N∑

i=1

li(x0) + f ′(x0)

N∑

i=1

(xi − x0)li(x0)

+
f ′′(x0)

2

N∑

i=1

(xi − x0)
2li(x0) + R, (6.10)

where the remainder term R involves third- and higher-order derivatives of
f , and is typically small under suitable smoothness assumptions. It can be
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression,
∑N

i=1 li(x0) = 1 and∑N
i=1(xi − x0)li(x0) = 0. Hence the middle term equals f(x0), and since

the bias is Ef̂(x0) − f(x0), we see that it depends only on quadratic and
higher–order terms in the expansion of f .

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)

⎡
⎣yi − α(x0)−

d∑

j=1

βj(x0)x
j
i

⎤
⎦

2

(6.11)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. In fact, an expansion such as

(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model yi = f(xi) + εi, with
εi independent and identically distributed with mean zero and variance
σ2, Var(f̂(x0)) = σ2||l(x0)||2, where l(x0) is the vector of equivalent kernel
weights at x0. It can be shown (Exercise 6.3) that ||l(x0)|| increases with d,
and so there is a bias–variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression,
∑N

i=1 li(x0) = 1 and∑N
i=1(xi − x0)li(x0) = 0. Hence the middle term equals f(x0), and since

the bias is Ef̂(x0) − f(x0), we see that it depends only on quadratic and
higher–order terms in the expansion of f .

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)

⎡
⎣yi − α(x0)−

d∑

j=1

βj(x0)x
j
i

⎤
⎦

2

(6.11)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. In fact, an expansion such as

(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model yi = f(xi) + εi, with
εi independent and identically distributed with mean zero and variance
σ2, Var(f̂(x0)) = σ2||l(x0)||2, where l(x0) is the vector of equivalent kernel
weights at x0. It can be shown (Exercise 6.3) that ||l(x0)|| increases with d,
and so there is a bias–variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two

Estimator: f̂ (x0) = α̂(x0) +
∑d

j=1 β̂j(x0)x j0

Moving to higher order polynomials

Bias is reduced.

Variance will increase.
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FIGURE 6.6. The variances functions ||l(x)||2 for local constant, linear and
quadratic regression, for a metric bandwidth (λ = 0.2) tri-cube kernel.

local polynomials. To summarize some collected wisdom on this issue:

• Local linear fits can help bias dramatically at the boundaries at a
modest cost in variance. Local quadratic fits do little at the bound-
aries for bias, but increase the variance a lot.

• Local quadratic fits tend to be most helpful in reducing bias due to
curvature in the interior of the domain.

• Asymptotic analysis suggest that local polynomials of odd degree
dominate those of even degree. This is largely due to the fact that
asymptotically the MSE is dominated by boundary effects.

While it may be helpful to tinker, and move from local linear fits at the
boundary to local quadratic fits in the interior, we do not recommend such
strategies. Usually the application will dictate the degree of the fit. For
example, if we are interested in extrapolation, then the boundary is of
more interest, and local linear fits are probably more reliable.

6.2 Selecting the Width of the Kernel

In each of the kernels Kλ, λ is a parameter that controls its width:

• For the Epanechnikov or tri-cube kernel with metric width, λ is the
radius of the support region.

• For the Gaussian kernel, λ is the standard deviation.

• λ is the number k of nearest neighbors in k-nearest neighborhoods,
often expressed as a fraction or span k/N of the total training sample.
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FIGURE 6.7. Equivalent kernels for a local linear regression smoother (tri-cube
kernel; orange) and a smoothing spline (blue), with matching degrees of freedom.
The vertical spikes indicates the target points.

There is a natural bias–variance tradeoff as we change the width of the
averaging window, which is most explicit for local averages:

• If the window is narrow, f̂(x0) is an average of a small number of yi

close to x0, and its variance will be relatively large—close to that of
an individual yi. The bias will tend to be small, again because each
of the E(yi) = f(xi) should be close to f(x0).

• If the window is wide, the variance of f̂(x0) will be small relative to
the variance of any yi, because of the effects of averaging. The bias
will be higher, because we are now using observations xi further from
x0, and there is no guarantee that f(xi) will be close to f(x0).

Similar arguments apply to local regression estimates, say local linear: as
the width goes to zero, the estimates approach a piecewise-linear function
that interpolates the training data1; as the width gets infinitely large, the
fit approaches the global linear least-squares fit to the data.

The discussion in Chapter 5 on selecting the regularization parameter for
smoothing splines applies here, and will not be repeated. Local regression
smoothers are linear estimators; the smoother matrix in f̂ = Sλy is built up
from the equivalent kernels (6.8), and has ijth entry {Sλ}ij = li(xj). Leave-
one-out cross-validation is particularly simple (Exercise 6.7), as is general-
ized cross-validation, Cp (Exercise 6.10), and k-fold cross-validation. The
effective degrees of freedom is again defined as trace(Sλ), and can be used
to calibrate the amount of smoothing. Figure 6.7 compares the equivalent
kernels for a smoothing spline and local linear regression. The local regres-
sion smoother has a span of 40%, which results in df = trace(Sλ) = 5.86.
The smoothing spline was calibrated to have the same df, and their equiv-
alent kernels are qualitatively quite similar.

1With uniformly spaced xi; with irregularly spaced xi, the behavior can deteriorate.

Solution: cross-validation
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Kernel regression in Rp

Let b(X ) be a vector of polynomial terms in X of maximum degree d .

d = 0 ⇒ b(X ) = (1)

d = 1, p = 2 ⇒ b(X ) = (1,X1,X2)

d = 2, p = 2 ⇒ b(X ) = (1,X1,X2,X
2
1 ,X

2
2 ,X1X2)

At each x0 ∈ Rp, one solves
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6.3 Local Regression in IRp

Kernel smoothing and local regression generalize very naturally to two or
more dimensions. The Nadaraya–Watson kernel smoother fits a constant
locally with weights supplied by a p-dimensional kernel. Local linear re-
gression will fit a hyperplane locally in X, by weighted least squares, with
weights supplied by a p-dimensional kernel. It is simple to implement and
is generally preferred to the local constant fit for its superior performance
on the boundaries.

Let b(X) be a vector of polynomial terms in X of maximum degree d.
For example, with d = 1 and p = 2 we get b(X) = (1, X1, X2); with d = 2
we get b(X) = (1, X1, X2, X

2
1 , X2

2 , X1X2); and trivially with d = 0 we get
b(X) = 1. At each x0 ∈ IRp solve

min
β(x0)

N∑

i=1

Kλ(x0, xi)(yi − b(xi)
Tβ(x0))

2 (6.12)

to produce the fit f̂(x0) = b(x0)
T β̂(x0). Typically the kernel will be a radial

function, such as the radial Epanechnikov or tri-cube kernel

Kλ(x0, x) = D

( ||x− x0||
λ

)
, (6.13)

where ||·|| is the Euclidean norm. Since the Euclidean norm depends on the
units in each coordinate, it makes most sense to standardize each predictor,
for example, to unit standard deviation, prior to smoothing.

While boundary effects are a problem in one-dimensional smoothing,
they are a much bigger problem in two or higher dimensions, since the
fraction of points on the boundary is larger. In fact, one of the manifesta-
tions of the curse of dimensionality is that the fraction of points close to the
boundary increases to one as the dimension grows. Directly modifying the
kernel to accommodate two-dimensional boundaries becomes very messy,
especially for irregular boundaries. Local polynomial regression seamlessly
performs boundary correction to the desired order in any dimensions. Fig-
ure 6.8 illustrates local linear regression on some measurements from an
astronomical study with an unusual predictor design (star-shaped). Here
the boundary is extremely irregular, and the fitted surface must also inter-
polate over regions of increasing data sparsity as we approach the boundary.

Local regression becomes less useful in dimensions much higher than two
or three. We have discussed in some detail the problems of dimensional-
ity, for example, in Chapter 2. It is impossible to simultaneously main-
tain localness (⇒ low bias) and a sizable sample in the neighborhood (⇒
low variance) as the dimension increases, without the total sample size in-

creasing exponentially in p. Visualization of f̂(X) also becomes difficult in
higher dimensions, and this is often one of the primary goals of smoothing.

to produce the fit f̂ (x0) = b(x0)T β̂(x0)

Typical kernel:
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the boundary is extremely irregular, and the fitted surface must also inter-
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Local regression becomes less useful in dimensions much higher than two
or three. We have discussed in some detail the problems of dimensional-
ity, for example, in Chapter 2. It is impossible to simultaneously main-
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creasing exponentially in p. Visualization of f̂(X) also becomes difficult in
higher dimensions, and this is often one of the primary goals of smoothing.
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FIGURE 6.8. The left panel shows three-dimensional data, where the response
is the velocity measurements on a galaxy, and the two predictors record positions
on the celestial sphere. The unusual “star”-shaped design indicates the way the
measurements were made, and results in an extremely irregular boundary. The
right panel shows the results of local linear regression smoothing in IR2, using a
nearest-neighbor window with 15% of the data.

Although the scatter-cloud and wire-frame pictures in Figure 6.8 look at-
tractive, it is quite difficult to interpret the results except at a gross level.
From a data analysis perspective, conditional plots are far more useful.

Figure 6.9 shows an analysis of some environmental data with three pre-
dictors. The trellis display here shows ozone as a function of radiation,
conditioned on the other two variables, temperature and wind speed. How-
ever, conditioning on the value of a variable really implies local to that
value (as in local regression). Above each of the panels in Figure 6.9 is an
indication of the range of values present in that panel for each of the condi-
tioning values. In the panel itself the data subsets are displayed (response
versus remaining variable), and a one-dimensional local linear regression is
fit to the data. Although this is not quite the same as looking at slices of
a fitted three-dimensional surface, it is probably more useful in terms of
understanding the joint behavior of the data.

6.4 Structured Local Regression Models in IRp

When the dimension to sample-size ratio is unfavorable, local regression
does not help us much, unless we are willing to make some structural as-
sumptions about the model. Much of this book is about structured regres-
sion and classification models. Here we focus on some approaches directly
related to kernel methods.
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