Chapter 4 – Classification

Wenjing Liao

School of Mathematics Georgia Institute of Technology

> Math 4803 Fall 2019

Outline

1 4.2 Why not linear regression?

2 4.3 Logistic regression

Binary qualitative response

Example: predict the medical condition of a patient in the emergency room on the basis of their symptoms

Binary response: stroke and drug overdose

$$Y = \begin{cases} 0 & \text{if stroke;} \\ 1 & \text{if drug overdose.} \end{cases}$$

Prediction: linear regression $X\hat{\beta}$ as an estimate of $\Pr(\text{drug overdose}|X)$ and predict drug overdose if $\hat{Y} > 0.5$.

Invariant to coding: If we flit the coding above, linear regression will produce the same prediction.

Problem: \hat{Y} may not belong to [0,1].

Qualitative response with more than two levels

Three responses: stroke, drug overdose and epileptic seizure

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \end{cases} \quad Y = \begin{cases} 1 & \text{if epileptic seizure;} \\ 2 & \text{if stroke;} \\ 3 & \text{if drug overdose.} \end{cases}$$

Problem:

- Different coding would produce fundamentally different linear models that would ultimately lead to different sets of predictions on test data.
- The dummy variable can not be easily extended to qualitative variables with more than two levels.

Outline

1 4.2 Why not linear regression?

2 4.3 Logistic regression

Probability model for binary response

FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Logistic function

Logistic function:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

Odds:

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}.$$

Take values between 0 and ∞ indicating low or high probabilities of default. For example, p(X) = 0.2 implies an odds of 1/4 and p(X) = 0.9 implies an odds of 9.

Log-odds (logit):

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Coefficient estimation

Maximum likelihood:

$$\ell(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i': y_{i'} = 0} (1 - p(x_{i'})).$$

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable student [Yes] in the table.

Prediction

Making predictions: balance X = 1,000

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576,$$

$$X = 2,000 \rightarrow \hat{p}(X) = 58.6\%$$

If we predict default from student,

$$\begin{split} \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Multiple logistic regression

Log-odds and odds:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p,$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$

Coefficients:

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance, income, and student status. Student status is encoded as a dummy variable student [Yes], with a value of 1 for a student and a value of 0 for a non-student. In fitting this model, income was measured in thousands of dollars.

Interpretation

Contradiction? The coefficient for student becomes negative.

FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown for students (orange) and non-students (blue). The solid lines display default rate as a function of balance, while the horizontal broken lines display the overall default rates. Right: Boxplots of balance for students (orange) and non-students (blue) are shown.

- Multiple and single logistic regression
- Student and balance are correlated.

Student versus non-student

A student with a credit card balance of 1,500 and income 40,000

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

A non-student with a credit card balance of 1,500 and income 40,000

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105.$$

However, students on average have a higher credit balance.

Reference

Textbook: James, Gareth, Daniela Witten, Trevor Hastie and Robert Tibshirani, An introduction to statistical learning. Vol. 112, New York: Springer, 2013