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Simple linear regression

Variables: (X,Y) where X, Y € R

Linear relation:
Y =~ Bo+ 81X
sales =~ By + 1 x TV

How to estimate [y and 37
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Advertising data: sales and TV

Sales
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TV

FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.
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Estimating the coefficients

Data: (x;,y),i=1,...,n

Residual sum of squares: With coefficients 30,31
9i = Bo+ Pixi

& =yi—Ji
RSS=el+...+¢e2

n

Coefficient estimation: (30,31) minimizes RSS

by = i (@i —T)(yi —9)
Y-z

1177)

(3.4)
Bo=19—
where y = %Z?:l y; and T = %Z?:l x; are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

™
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Optimization
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates Bo and Bi, given by (3.4).
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Simple linear regression
Variables: (X,Y) where X ¢ RP and Y € R

Linear relation:
Y = fBo+ BiXt+ ...+ BpXp

sales = g + 81 X TV + B2 X radio + (3 X newspaper + €.

How to estimate the coefficients?

(] Bo + Brx1 + Boxs +"'+/épxp'

RSS:

RSS = (yi — 9i)*

H'M:
I

I

-
Il
-

(yi - Bo - leil - Bﬁz‘z - Bpmip)2'
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Example

Xy

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen

to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.
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Collinearity
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
B for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (BLimit, Brating) with a similar value for RSS.
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Correlation matrix

@ Correlation matrix helps to detect the collinearity between two
columns of A.

S (i —T) (i — )
Cor(X,Y) = ,
N = A e TP

@ Correlation matrix does not help to detect multicollinearity, for
example, Vi + 2 — 3 = 0.
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How to handle collinearity?

Reference: https://en.wikipedia.org/wiki/Multicollinearity

@ Drop one of the variables
@ Obtain more data, if possible
@ Mean-center the predictor variables

@ Ridge regression

min |Ax — b3 + [1x[3
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Qualitative

variables

Credit data set
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-

tomers.
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Gender variable

Quantify gender:

1 if ith person is female
T =
! 0 if 4th person is male,

Credit balance versus gender:

Bo + P1+ € if th person is female
Bo + € if ith person is male.

yi=50+51$i+6i={

Results: 8y = 509.80, 5; = 17.73

Average debt for males 8y = 509.80
Average debt for females 5y + 51 = 509.80 + 19.73 = 529.53
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An alternative way
Quantify gender:

1 if ith person is female
T, =
’ -1 if 4th person is male

Credit balance versus gender:

Bo+ P11+ € if ith person is female
yi:50+ﬁlxi+€i:{0 L

Bo — 1 +¢€  if ith person is male.

Results: By = 519.665, 81 = 9.865

Average debt for males 5y — 51 = 509.80
Average debt for females By + 1 = 529.53
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Qualitative variables with more than two levels

1 if ith person is Asian
€T; =
& 0 if 7th person is not Asian,

1 if ¢th person is Caucasian
Ti2 =

0 if 4th person is not Caucasian.
Bo+B1+¢€; if ith person is Asian

Yi = Pot+Prxii+Lexia+e; = { Bo+B2+e€; if ith person is Caucasian
Bo+e€; if ith person is African American.
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Extensions of the linear model: incorporating interaction
terms

Linear model:

Y = fo + 1 X1 + B2 X2 + €

Incorporating product terms:
Y = Bo+ 1 X1+ B2 Xo + B3X1 X2 + €.

Y = Bo+ (B1+ F3X2) X1 + P2Xo+ €
= Bo+5iX1+ BXe+e€
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Incorporating interaction terms

Linear model: balance =~ By + 1 X income + 5 X student

155 if 7th person is a student

balance; =~ 0 + b1 X income; + L .
! bo+ 5 ! {O if ith person is not a student

Bo + Bo if ith person is a student

[B1 X income; + {

Bo if ¢th person is not a student.

Incorporating product terms:

balance =~ 3y + 1 X income + (5 X student + 33 X income X student

X i i if student
balance; =~ [+ fB1 X income; + B2 + B3 x income '
0 if not student

_ (Bo + B2) + (1 + B3) X income; if student
Bo + B1 X income; if not student
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Incorporating interaction terms

Linear model With an interaction term
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.84) was fit. There is no interaction between income and student. Right: The
model (3.85) was fit. There is an interaction term between income and student.
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Nonlinear relations
Linear: Y = By + 1 X
Quadratic: Y = By + B1.X + BoX?

Polynomials of degree p: Y = By + f1X + B2 X? + ... + BpXP
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower” is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is

shown in green.
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© 3.5 Comparison of linear regression with KNN regression
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KNN regression

At Xo, Yo = % Xjen, Yi where N contains the K points in the training
data that are closest to Xj

FIGURE 3.16. Plots of f(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K =1 results in a rough step func-
tion fit. Right: K =9 produces a much smoother fit.
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KNN regression
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FIGURE 3.17. Plots of f(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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Linear regression

@ Linear regression works well if the underlying function is indeed linear.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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Linear regression
@ Linear regression may not work well if the function is nonlinear.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K =1 (blue) and K =9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
Jor least squares regression (horizontal black) and KNN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y.
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Curse of dimensionality for KNN regression
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non—
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.
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