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Simple linear regression

Variables: (X ,Y ) where X ,Y ∈ R

Linear relation:
Y ≈ β0 + β1X

sales ≈ β0 + β1 × TV

How to estimate β0 and β1?

3 / 29



Advertising data: sales and TV62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e2
1 + e2

2 + · · · + e2
n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2 +(y2− β̂0− β̂1x2)

2 + . . .+(yn− β̂0− β̂1xn)2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to
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Estimating the coefficients

Data: (xi , yi ), i = 1, . . . , n

Residual sum of squares: With coefficients β̂0, β̂1

ŷi = β̂0 + β̂1xi

ei = yi − ŷi

RSS = e21 + . . .+ e2n

Coefficient estimation: (β̂0, β̂1) minimizes RSS

62 3. Linear Regression

0 50 100 150 200 250 300

5
10

15
20

25

TV

S
al

es

FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
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data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to
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Optimization

3.1 Simple Linear Regression 63
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates β̂0 and β̂1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of β0 and β1,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(β̂0, β̂1) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ϵ for some unknown function f , where ϵ
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = β0 + β1X + ϵ. (3.5)

Here β0 is the intercept term—that is, the expected value of Y when X = 0,
and β1 is the slope—the average increase in Y associated with a one-unit
increase in X . The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y , and there may be measurement
error. We typically assume that the error term is independent of X .

The model given by (3.5) defines the population regression line, which
population
regression
line

is the best linear approximation to the true relationship between X and
Y .1 The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

least squares
line

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.
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Simple linear regression

Variables: (X ,Y ) where X ∈ Rp and Y ∈ R

Linear relation:
Y ≈ β0 + β1X1 + . . .+ βpXp

72 3. Linear Regression

Simple regression of sales on radio

Coefficient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales variable is in thousands of units, and the radio and newspaper

variables are in thousands of dollars).

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response. We interpret βj as the average
effect on Y of a one unit increase in Xj , holding all other predictors fixed.
In the advertising example, (3.19) becomes

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ϵ. (3.20)

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-
ficients β0, β1, . . . , βp in (3.19) are unknown, and must be estimated. Given

estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0, β1, . . . , βp

to minimize the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi)
2

=

n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2. (3.22)

How to estimate the coefficients?
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RSS:
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Example 3.2 Multiple Linear Regression 73

X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper

in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates
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Collinearity

100 3. Linear Regression
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
β for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (βLimit, βRating) with a similar value for RSS.

lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating

coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.
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Correlation matrix

Correlation matrix helps to detect the collinearity between two
columns of A.

70 3. Linear Regression

To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion
of variability in Y that can be explained using X . An R2 statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error σ2 is high,
or both. In Table 3.2, the R2 was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.

The R2 statistic (3.17) has an interpretational advantage over the RSE
(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smaller R2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!

The R2 statistic is a measure of the linear relationship between X and
Y . Recall that correlation, defined as

correlation

Cor(X, Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X, Y ) instead of R2 in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write ̂Cor(X, Y ); however, we omit the “hat” for ease of
notation.

Correlation matrix does not help to detect multicollinearity, for
example, ~v1 + 2~v2 − ~v3 = 0.
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How to handle collinearity?

Reference: https://en.wikipedia.org/wiki/Multicollinearity

Drop one of the variables

Obtain more data, if possible

Mean-center the predictor variables

Ridge regression

min
x
‖Ax − b‖22 + ‖x‖22
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Qualitative variables
Credit data set

3.3 Other Considerations in the Regression Model 83

For example, the Credit data set displayed in Figure 3.6 records balance

(average credit card debt for a number of individuals) as well as several
quantitative predictors: age, cards (number of credit cards), education

(years of education), income (in thousands of dollars), limit (credit limit),
and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a
pair of variables whose identities are given by the corresponding row and
column labels. For example, the scatterplot directly to the right of the word
“Balance” depicts balance versus age, while the plot directly to the right
of “Age” corresponds to age versus cards. In addition to these quantitative
variables, we also have four qualitative variables: gender, student (student
status), status (marital status), and ethnicity (Caucasian, African Amer-
ican or Asian).
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers. 15 / 29



Gender variable

Quantify gender:

84 3. Linear Regression

Coefficient Std. error t-statistic p-value

Intercept 509.80 33.13 15.389 < 0.0001
gender[Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-

factor

levelble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy variable that takes on two possible

dummy
variablenumerical values. For example, based on the gender variable, we can create

a new variable that takes the form

xi =

{
1 if ith person is female

0 if ith person is male,
(3.26)

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 + β1xi + ϵi =

{
β0 + β1 + ϵi if ith person is female

β0 + ϵi if ith person is male.
(3.27)

Now β0 can be interpreted as the average credit card balance among males,
β0 + β1 as the average credit card balance among females, and β1 as the
average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and
has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for β0 and β1 would have been 529.53 and −19.73, respectively, leading once
again to a prediction of credit card debt of $529.53− $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable

Credit balance versus gender:

84 3. Linear Regression

Coefficient Std. error t-statistic p-value

Intercept 509.80 33.13 15.389 < 0.0001
gender[Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-

factor

levelble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy variable that takes on two possible

dummy
variablenumerical values. For example, based on the gender variable, we can create

a new variable that takes the form

xi =

{
1 if ith person is female

0 if ith person is male,
(3.26)

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 + β1xi + ϵi =

{
β0 + β1 + ϵi if ith person is female

β0 + ϵi if ith person is male.
(3.27)

Now β0 can be interpreted as the average credit card balance among males,
β0 + β1 as the average credit card balance among females, and β1 as the
average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and
has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for β0 and β1 would have been 529.53 and −19.73, respectively, leading once
again to a prediction of credit card debt of $529.53− $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable

Results: β0 = 509.80, β1 = 17.73

Average debt for males β0 = 509.80
Average debt for females β0 + β1 = 509.80 + 19.73 = 529.53
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An alternative way

Quantify gender: 3.3 Other Considerations in the Regression Model 85

xi =

{
1 if ith person is female

−1 if ith person is male

and use this variable in the regression equation. This results in the model

yi = β0 + β1xi + ϵi =

{
β0 + β1 + ϵi if ith person is female

β0 − β1 + ϵi if ith person is male.

Now β0 can be interpreted as the overall average credit card balance (ig-
noring the gender effect), and β1 is the amount that females are above the
average and males are below the average. In this example, the estimate for
β0 would be $519.665, halfway between the male and female averages of
$509.80 and $529.53. The estimate for β1 would be $9.865, which is half of
$19.73, the average difference between females and males. It is important to
note that the final predictions for the credit balances of males and females
will be identical regardless of the coding scheme used. The only difference
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Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

xi1 =

{
1 if ith person is Asian

0 if ith person is not Asian,
(3.28)

and the second could be

xi2 =

{
1 if ith person is Caucasian

0 if ith person is not Caucasian.
(3.29)

Then both of these variables can be used in the regression equation, in
order to obtain the model

yi = β0+β1xi1+β2xi2+ϵi =

⎧
⎪⎨
⎪⎩

β0+β1+ϵi if ith person is Asian

β0+β2+ϵi if ith person is Caucasian

β0+ϵi if ith person is African American.

(3.30)
Now β0 can be interpreted as the average credit card balance for African
Americans, β1 can be interpreted as the difference in the average balance
between the Asian and African American categories, and β2 can be inter-
preted as the difference in the average balance between the Caucasian and
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Results: β0 = 519.665, β1 = 9.865

Average debt for males β0 − β1 = 509.80
Average debt for females β0 + β1 = 529.53
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Extensions of the linear model: incorporating interaction
terms

Linear model:

3.3 Other Considerations in the Regression Model 87

means that the effect of changes in a predictor Xj on the response Y is
independent of the values of the other predictors. The linear assumption
states that the change in the response Y due to a one-unit change in Xj is
constant, regardless of the value of Xj . In this book, we examine a number
of sophisticated methods that relax these two assumptions. Here, we briefly
examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV

and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average effect
on sales of a one-unit increase in TV is always β1, regardless of the amount
spent on radio.

However, this simple model may be incorrect. Suppose that spending
money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio

and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

Y = β0 + β1X1 + β2X2 + ϵ.

According to this model, if we increase X1 by one unit, then Y will increase
by an average of β1 units. Notice that the presence of X2 does not alter
this statement—that is, regardless of the value of X2, a one-unit increase
in X1 will lead to a β1-unit increase in Y . One way of extending this model
to allow for interaction effects is to include a third predictor, called an
interaction term, which is constructed by computing the product of X1

and X2. This results in the model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ. (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = β0 + (β1 + β3X2)X1 + β2X2 + ϵ (3.32)

= β0 + β̃1X1 + β2X2 + ϵ

Incorporating product terms:
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Incorporating interaction terms

Linear model: balance ≈ β0 + β1 × income + β2 × student
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estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (β̂1+β̂3×radio)×1,000 = 19+1.1×radio

units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (β̂2 + β̂3 × TV)× 1,000 = 29 + 1.1× TV units.

In this example, the p-values associated with TV, radio, and the interac-
tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we

hierarchical
principleshould also include the main effects, even if the p-values associated with

their coefficients are not significant. In other words, if the interaction be-
tween X1 and X2 seems important, then we should include both X1 and
X2 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X1 × X2 is related to the response,
then whether or not the coefficients of X1 or X2 are exactly zero is of lit-
tle interest. Also X1 ×X2 is typically correlated with X1 and X2, and so
leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and
radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student

(qualitative) variables. In the absence of an interaction term, the model
takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student

0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student

β0 if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, β0 + β2 versus β0, but the same slope, β1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, cre-
ated by multiplying income with the dummy variable for student. Our

Incorporating product terms:

balance ≈ β0 + β1 × income + β2 × student + β3 × income× student
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

model now becomes

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student

0 if not student

=

{
(β0 + β2) + (β1 + β3)× incomei if student

β0 + β1 × incomei if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
β0+β2 versus β0, as well as different slopes, β1+β3 versus β1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In

polynomial
regressionlater chapters, we will present more complex approaches for performing

non-linear fits in more general settings.
Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)

versus horsepower is shown for a number of cars in the Auto data set. The
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Nonlinear relations
Linear: Y = β0 + β1X
Quadratic: Y = β0 + β1X + β2X

2

Polynomials of degree p: Y = β0 + β1X + β2X
2 + . . .+ βpX

p
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a

quadratic
model of the form

mpg = β0 + β1 × horsepower + β2 × horsepower2 + ϵ (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X1 = horsepower

and X2 = horsepower2. So we can use standard linear regression software to
estimate β0, β1, and β2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R2 of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.

If including horsepower2 led to such a big improvement in the model, why
not include horsepower3, horsepower4, or even horsepower5? The green curve
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KNN regression

At X0, Ŷ0 = 1
K

∑
i∈N0

Yi where N0 contains the K points in the training
data that are closest to X0

3.5 Comparison of Linear Regression with K-Nearest Neighbors 105
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FIGURE 3.16. Plots of f̂(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step func-
tion fit. Right: K = 9 produces a much smoother fit.

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point x0, KNN
regression first identifies the K training observations that are closest to
x0, represented by N0. It then estimates f(x0) using the average of all the
training responses in N0. In other words,

f̂(x0) =
1

K

∑

xi∈N0

yi.

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors.
The fit with K = 1 is shown in the left-hand panel, while the right-hand
panel corresponds to K = 9. We see that when K = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form of
a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant
prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.
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FIGURE 3.17. Plots of f̂(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

0.2 0.5 1.0

0.
00

0.
05

0.
10

0.
15

M
ea

n 
S

qu
ar

ed
 E

rr
or

y

x 1/K

FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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Linear regression
Linear regression works well if the underlying function is indeed linear.
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FIGURE 3.17. Plots of f̂(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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Linear regression
Linear regression may not work well if the function is nonlinear.

108 3. Linear Regression
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K = 1 (blue) and K = 9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and KNN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .

predictors that are not associated with the response. When p = 1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p ≥ 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
100 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 100 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is,

curse of di-
mensionalitythe K observations that are nearest to a given test observation x0 may be

very far away from x0 in p-dimensional space when p is large, leading to a
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Curse of dimensionality for KNN regression
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non–
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

very poor prediction of f(x0) and hence a poor KNN fit. As a general rule,
parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.

Even in problems in which the dimension is small, we might prefer linear
regression to KNN from an interpretability standpoint. If the test MSE
of KNN is only slightly lower than that of linear regression, we might be
willing to forego a little bit of prediction accuracy for the sake of a simple
model that can be described in terms of just a few coefficients, and for
which p-values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library() function is used to load libraries, or groups of functions and
library()

data sets that are not included in the base R distribution. Basic functions
that perform least squares linear regression and other simple analyses come
standard with the base distribution, but more exotic functions require ad-
ditional libraries. Here we load the MASS package, which is a very large
collection of data sets and functions. We also load the ISLR package, which
includes the data sets associated with this book.

> library (MASS)

> library (ISLR)

If you receive an error message when loading any of these libraries, it
likely indicates that the corresponding library has not yet been installed
on your system. Some libraries, such as MASS, come with R and do not need to
be separately installed on your computer. However, other packages, such as
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