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FIGURE 14.4. Simulated data in the plane, clustered into three classes (repre-
sented by orange, blue and green) by the K-means clustering algorithm

that at each level of the hierarchy, clusters within the same group are more
similar to each other than those in different groups.

Cluster analysis is also used to form descriptive statistics to ascertain
whether or not the data consists of a set distinct subgroups, each group
representing objects with substantially different properties. This latter goal
requires an assessment of the degree of difference between the objects as-
signed to the respective clusters.

Central to all of the goals of cluster analysis is the notion of the degree of
similarity (or dissimilarity) between the individual objects being clustered.
A clustering method attempts to group the objects based on the definition
of similarity supplied to it. This can only come from subject matter consid-
erations. The situation is somewhat similar to the specification of a loss or
cost function in prediction problems (supervised learning). There the cost
associated with an inaccurate prediction depends on considerations outside
the data.

Figure 14.4 shows some simulated data clustered into three groups via
the popular K-means algorithm. In this case two of the clusters are not
well separated, so that “segmentation” more accurately describes the part
of this process than “clustering.” K-means clustering starts with guesses
for the three cluster centers. Then it alternates the following steps until
convergence:

• for each data point, the closest cluster center (in Euclidean distance)
is identified;
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14.1 – Proximity matrices

Data: {xi}Ni=1

Proximity matrix: D ∈ RN×N , dii = 0

Symmetrization: If D is not symmetric, we can take (D + DT )/2

Dissimilarities based on attributes:
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• each cluster center is replaced by the coordinate-wise average of all
data points that are closest to it.

We describe K-means clustering in more detail later, including the prob-
lem of how to choose the number of clusters (three in this example). K-
means clustering is a top-down procedure, while other cluster approaches
that we discuss are bottom-up. Fundamental to all clustering techniques is
the choice of distance or dissimilarity measure between two objects. We
first discuss distance measures before describing a variety of algorithms for
clustering.

14.3.1 Proximity Matrices

Sometimes the data is represented directly in terms of the proximity (alike-
ness or affinity) between pairs of objects. These can be either similarities or
dissimilarities (difference or lack of affinity). For example, in social science
experiments, participants are asked to judge by how much certain objects
differ from one another. Dissimilarities can then be computed by averaging
over the collection of such judgments. This type of data can be represented
by an N×N matrix D, where N is the number of objects, and each element
dii′ records the proximity between the ith and i′th objects. This matrix is
then provided as input to the clustering algorithm.

Most algorithms presume a matrix of dissimilarities with nonnegative
entries and zero diagonal elements: dii = 0, i = 1, 2, . . . , N. If the original
data were collected as similarities, a suitable monotone-decreasing function
can be used to convert them to dissimilarities. Also, most algorithms as-
sume symmetric dissimilarity matrices, so if the original matrix D is not
symmetric it must be replaced by (D+DT )/2. Subjectively judged dissimi-
larities are seldom distances in the strict sense, since the triangle inequality
dii′ ≤ dik+di′k, for all k ∈ {1, . . . , N} does not hold. Thus, some algorithms
that assume distances cannot be used with such data.

14.3.2 Dissimilarities Based on Attributes

Most often we have measurements xij for i = 1, 2, . . . , N , on variables
j = 1, 2, . . . , p (also called attributes). Since most of the popular clustering
algorithms take a dissimilarity matrix as their input, we must first construct
pairwise dissimilarities between the observations. In the most common case,
we define a dissimilarity dj(xij , xi′j) between values of the jth attribute,
and then define

D(xi, xi′) =

p∑

j=1

dj(xij , xi′j) (14.20)

as the dissimilarity between objects i and i′. By far the most common
choice is squared distancewhere xij is the jth attribute of the ith data.
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dj(xij , xi′j) = (xij − xi′j)
2. (14.21)

However, other choices are possible, and can lead to potentially different
results. For nonquantitative attributes (e.g., categorical data), squared dis-
tance may not be appropriate. In addition, it is sometimes desirable to
weigh attributes differently rather than giving them equal weight as in
(14.20).

We first discuss alternatives in terms of the attribute type:

Quantitative variables. Measurements of this type of variable or attribute
are represented by continuous real-valued numbers. It is natural to
define the “error” between them as a monotone-increasing function
of their absolute difference

d(xi, xi′) = l(|xi − xi′ |).
Besides squared-error loss (xi−xi′)2, a common choice is the identity
(absolute error). The former places more emphasis on larger differ-
ences than smaller ones. Alternatively, clustering can be based on the
correlation

ρ(xi, xi′) =

∑
j(xij − x̄i)(xi′j − x̄i′)

√∑
j(xij − x̄i)2

∑
j(xi′j − x̄i′)2

, (14.22)

with x̄i =
∑

j xij/p. Note that this is averaged over variables, not ob-
servations. If the observations are first standardized, then

∑
j(xij −

xi′j)
2 ∝ 2(1−ρ(xi, xi′)). Hence clustering based on correlation (simi-

larity) is equivalent to that based on squared distance (dissimilarity).

Ordinal variables. The values of this type of variable are often represented
as contiguous integers, and the realizable values are considered to be
an ordered set. Examples are academic grades (A, B, C, D, F), degree
of preference (can’t stand, dislike, OK, like, terrific). Rank data are a
special kind of ordinal data. Error measures for ordinal variables are
generally defined by replacing their M original values with

i− 1/2

M
, i = 1, . . . , M (14.23)

in the prescribed order of their original values. They are then treated
as quantitative variables on this scale.

Categorical variables. With unordered categorical (also called nominal)
variables, the degree-of-difference between pairs of values must be
delineated explicitly. If the variable assumes M distinct values, these
can be arranged in a symmetric M ×M matrix with elements Lrr′ =
Lr′r, Lrr = 0, Lrr′ ≥ 0. The most common choice is Lrr′ = 1 for all
r ̸= r′, while unequal losses can be used to emphasize some errors
more than others.

More general
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where l(·) is a monotone-increasing function.

Based on correlation
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14.3.3 Object Dissimilarity

Next we define a procedure for combining the p-individual attribute dissim-
ilarities dj(xij , xi′j), j = 1, 2, . . . , p into a single overall measure of dissim-
ilarity D(xi, xi′) between two objects or observations (xi, xi′) possessing
the respective attribute values. This is nearly always done by means of a
weighted average (convex combination)

D(xi, xi′) =

p∑

j=1

wj · dj(xij , xi′j);

p∑

j=1

wj = 1. (14.24)

Here wj is a weight assigned to the jth attribute regulating the relative
influence of that variable in determining the overall dissimilarity between
objects. This choice should be based on subject matter considerations.

It is important to realize that setting the weight wj to the same value
for each variable (say, wj = 1 ∀ j) does not necessarily give all attributes
equal influence. The influence of the jth attribute Xj on object dissimilarity
D(xi, xi′) (14.24) depends upon its relative contribution to the average
object dissimilarity measure over all pairs of observations in the data set

D̄ =
1

N2

N∑

i=1

N∑

i′=1

D(xi, xi′) =

p∑

j=1

wj · d̄j ,

with

d̄j =
1

N2

N∑

i=1

N∑

i′=1

dj(xij , xi′j) (14.25)

being the average dissimilarity on the jth attribute. Thus, the relative in-
fluence of the jth variable is wj · d̄j , and setting wj ∼ 1/d̄j would give all
attributes equal influence in characterizing overall dissimilarity between ob-
jects. For example, with p quantitative variables and squared-error distance
used for each coordinate, then (14.24) becomes the (weighted) squared Eu-
clidean distance

DI(xi, xi′) =

p∑

j=1

wj · (xij − xi′j)
2 (14.26)

between pairs of points in an IRp, with the quantitative variables as axes.
In this case (14.25) becomes

d̄j =
1

N2

N∑

i=1

N∑

i′=1

(xij − xi′j)
2 = 2 · varj , (14.27)

where varj is the sample estimate of Var(Xj). Thus, the relative impor-
tance of each such variable is proportional to its variance over the data

506 14. Unsupervised Learning

-6 -4 -2 0 2 4

-6
-4

-2
0

2
4

• •

•

•

•

• •
•

•

•
•
•

•
•

•••
•
••

•

•

•

•

•
•

•
•

• ••• •
••
•
•• • •
•• •
•

•
•
•••

••
••

•
•••

•

••
• ••• ••

•

•

•
•

• ••

•
•

•
•

•
•
••
••

•

• •

•

•
••

••

••
•

••
•

•
•

-2 -1 0 1 2

-2
-1

0
1

2

•
•

••

•

•
•

•
•

••

•
•

•

•
•
•

•
•

•

•
•

••

•••
•
•

•
• •

•

••

• ••
•

•

• •
•

•
•

•
•
•

•

•

•

•
•
•

•
•

•

••
• •

•

•

•

•

•
•

•
•

••
•

• •
• • •
•
•

•

•

•

•
•

•
•

•

•• •• • •
•
••
•
•

•

•

X1X1
X

2

X
2

FIGURE 14.5. Simulated data: on the left, K-means clustering (with K=2) has
been applied to the raw data. The two colors indicate the cluster memberships. On
the right, the features were first standardized before clustering. This is equivalent
to using feature weights 1/[2 ·var(Xj)]. The standardization has obscured the two
well-separated groups. Note that each plot uses the same units in the horizontal
and vertical axes.

set. In general, setting wj = 1/d̄j for all attributes, irrespective of type,
will cause each one of them to equally influence the overall dissimilarity
between pairs of objects (xi, xi′). Although this may seem reasonable, and
is often recommended, it can be highly counterproductive. If the goal is to
segment the data into groups of similar objects, all attributes may not con-
tribute equally to the (problem-dependent) notion of dissimilarity between
objects. Some attribute value differences may reflect greater actual object
dissimilarity in the context of the problem domain.

If the goal is to discover natural groupings in the data, some attributes
may exhibit more of a grouping tendency than others. Variables that are
more relevant in separating the groups should be assigned a higher influ-
ence in defining object dissimilarity. Giving all attributes equal influence
in this case will tend to obscure the groups to the point where a clustering
algorithm cannot uncover them. Figure 14.5 shows an example.

Although simple generic prescriptions for choosing the individual at-
tribute dissimilarities dj(xij , xi′j) and their weights wj can be comforting,
there is no substitute for careful thought in the context of each individ-
ual problem. Specifying an appropriate dissimilarity measure is far more
important in obtaining success with clustering than choice of clustering
algorithm. This aspect of the problem is emphasized less in the cluster-
ing literature than the algorithms themselves, since it depends on domain
knowledge specifics and is less amenable to general research.
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Clustering algorithms
N points: xi , i ∈ {1, . . . ,N}
K clusters k ∈ {1, . . . ,K}
Encoder k = C (i), that assigns the ith point to the kth cluster

Energy functions:

508 14. Unsupervised Learning

required goal (details below), based on the dissimilarities d(xi, xi′) between
every pair of observations. These are specified by the user as described
above. Generally, the encoder C(i) is explicitly delineated by giving its
value (cluster assignment) for each observation i. Thus, the “parameters”
of the procedure are the individual cluster assignments for each of the N
observations. These are adjusted so as to minimize a “loss” function that
characterizes the degree to which the clustering goal is not met.

One approach is to directly specify a mathematical loss function and
attempt to minimize it through some combinatorial optimization algorithm.
Since the goal is to assign close points to the same cluster, a natural loss
(or “energy”) function would be

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

d(xi, xi′). (14.28)

This criterion characterizes the extent to which observations assigned to
the same cluster tend to be close to one another. It is sometimes referred
to as the “within cluster” point scatter since

T =
1

2

N∑

i=1

N∑

i′=1

dii′ =
1

2

K∑

k=1

∑

C(i)=k

⎛
⎝ ∑

C(i′)=k

dii′ +
∑

C(i′) ̸=k

dii′

⎞
⎠ ,

or
T = W (C) + B(C),

where dii′ = d(xi, xi′). Here T is the total point scatter, which is a constant
given the data, independent of cluster assignment. The quantity

B(C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′) ̸=k

dii′ (14.29)

is the between-cluster point scatter. This will tend to be large when obser-
vations assigned to different clusters are far apart. Thus one has

W (C) = T −B(C)

and minimizing W (C) is equivalent to maximizing B(C).
Cluster analysis by combinatorial optimization is straightforward in prin-

ciple. One simply minimizes W or equivalently maximizes B over all pos-
sible assignments of the N data points to K clusters. Unfortunately, such
optimization by complete enumeration is feasible only for very small data
sets. The number of distinct assignments is (Jain and Dubes, 1988)

S(N,K) =
1

K!

K∑

k=1

(−1)K−k

(
K

k

)
kN . (14.30)

For example, S(10, 4) = 34, 105 which is quite feasible. But, S(N,K) grows
very rapidly with increasing values of its arguments. Already S(19, 4) ≃
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W is the in-cluster point scatters, and W is the between-cluster point
scatters. T is the total point scatters, which is a constant given the data,
independent of cluster assignment. 8 / 19



Clustering algorithms

Clustering: maximize W (C ) or minimize B(C )

Problem: solving this optimization problem directly is combinatorial. The
number of distinct assignments is

508 14. Unsupervised Learning
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dii′ (14.29)

is the between-cluster point scatter. This will tend to be large when obser-
vations assigned to different clusters are far apart. Thus one has

W (C) = T −B(C)

and minimizing W (C) is equivalent to maximizing B(C).
Cluster analysis by combinatorial optimization is straightforward in prin-

ciple. One simply minimizes W or equivalently maximizes B over all pos-
sible assignments of the N data points to K clusters. Unfortunately, such
optimization by complete enumeration is feasible only for very small data
sets. The number of distinct assignments is (Jain and Dubes, 1988)

S(N,K) =
1

K!

K∑

k=1

(−1)K−k

(
K

k

)
kN . (14.30)

For example, S(10, 4) = 34, 105 which is quite feasible. But, S(N,K) grows
very rapidly with increasing values of its arguments. Already S(19, 4) ≃S(10, 4) = 34, 105 and S(19, 4) ≈ 1010
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1010, and most clustering problems involve much larger data sets than
N = 19. For this reason, practical clustering algorithms are able to examine
only a very small fraction of all possible encoders k = C(i). The goal is to
identify a small subset that is likely to contain the optimal one, or at least
a good suboptimal partition.

Such feasible strategies are based on iterative greedy descent. An initial
partition is specified. At each iterative step, the cluster assignments are
changed in such a way that the value of the criterion is improved from
its previous value. Clustering algorithms of this type differ in their pre-
scriptions for modifying the cluster assignments at each iteration. When
the prescription is unable to provide an improvement, the algorithm ter-
minates with the current assignments as its solution. Since the assignment
of observations to clusters at any iteration is a perturbation of that for the
previous iteration, only a very small fraction of all possible assignments
(14.30) are examined. However, these algorithms converge to local optima
which may be highly suboptimal when compared to the global optimum.

14.3.6 K-means

The K-means algorithm is one of the most popular iterative descent clus-
tering methods. It is intended for situations in which all variables are of
the quantitative type, and squared Euclidean distance

d(xi, xi′) =

p∑

j=1

(xij − xi′j)
2 = ||xi − xi′ ||2

is chosen as the dissimilarity measure. Note that weighted Euclidean dis-
tance can be used by redefining the xij values (Exercise 14.1).

The within-point scatter (14.28) can be written as

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

||xi − xi′ ||2

=

K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2, (14.31)

where x̄k = (x̄1k, . . . , x̄pk) is the mean vector associated with the kth clus-

ter, and Nk =
∑N

i=1 I(C(i) = k). Thus, the criterion is minimized by
assigning the N observations to the K clusters in such a way that within
each cluster the average dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is minimized.

An iterative descent algorithm for solving
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where x̄k = (x̄1k , . . . , x̄pk) is the mean vector associated with the kth
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∑N

i=1 I (C (i) = k).
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Algorithm 14.1 K-means Clustering.

1. For a given cluster assignment C, the total cluster variance (14.33) is
minimized with respect to {m1, . . . , mK} yielding the means of the
currently assigned clusters (14.32).

2. Given a current set of means {m1, . . . , mK}, (14.33) is minimized by
assigning each observation to the closest (current) cluster mean. That
is,

C(i) = argmin
1≤k≤K

||xi −mk||2. (14.34)

3. Steps 1 and 2 are iterated until the assignments do not change.

C∗ = min
C

K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2

can be obtained by noting that for any set of observations S

x̄S = argmin
m

∑

i∈S

||xi −m||2. (14.32)

Hence we can obtain C∗ by solving the enlarged optimization problem

min
C,{mk}K

1

K∑

k=1

Nk

∑

C(i)=k

||xi −mk||2. (14.33)

This can be minimized by an alternating optimization procedure given in
Algorithm 14.1.

Each of steps 1 and 2 reduces the value of the criterion (14.33), so that
convergence is assured. However, the result may represent a suboptimal
local minimum. The algorithm of Hartigan and Wong (1979) goes further,
and ensures that there is no single switch of an observation from one group
to another group that will decrease the objective. In addition, one should
start the algorithm with many different random choices for the starting
means, and choose the solution having smallest value of the objective func-
tion.

Figure 14.6 shows some of the K-means iterations for the simulated data
of Figure 14.4. The centroids are depicted by “O”s. The straight lines show
the partitioning of points, each sector being the set of points closest to
each centroid. This partitioning is called the Voronoi tessellation. After 20
iterations the procedure has converged.

14.3.7 Gaussian Mixtures as Soft K-means Clustering

The K-means clustering procedure is closely related to the EM algorithm
for estimating a certain Gaussian mixture model. (Sections 6.8 and 8.5.1).

where for any subset S

510 14. Unsupervised Learning

Algorithm 14.1 K-means Clustering.

1. For a given cluster assignment C, the total cluster variance (14.33) is
minimized with respect to {m1, . . . , mK} yielding the means of the
currently assigned clusters (14.32).

2. Given a current set of means {m1, . . . , mK}, (14.33) is minimized by
assigning each observation to the closest (current) cluster mean. That
is,

C(i) = argmin
1≤k≤K

||xi −mk||2. (14.34)

3. Steps 1 and 2 are iterated until the assignments do not change.

C∗ = min
C

K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2

can be obtained by noting that for any set of observations S

x̄S = argmin
m

∑

i∈S

||xi −m||2. (14.32)

Hence we can obtain C∗ by solving the enlarged optimization problem

min
C,{mk}K

1

K∑

k=1

Nk

∑

C(i)=k

||xi −mk||2. (14.33)

This can be minimized by an alternating optimization procedure given in
Algorithm 14.1.

Each of steps 1 and 2 reduces the value of the criterion (14.33), so that
convergence is assured. However, the result may represent a suboptimal
local minimum. The algorithm of Hartigan and Wong (1979) goes further,
and ensures that there is no single switch of an observation from one group
to another group that will decrease the objective. In addition, one should
start the algorithm with many different random choices for the starting
means, and choose the solution having smallest value of the objective func-
tion.

Figure 14.6 shows some of the K-means iterations for the simulated data
of Figure 14.4. The centroids are depicted by “O”s. The straight lines show
the partitioning of points, each sector being the set of points closest to
each centroid. This partitioning is called the Voronoi tessellation. After 20
iterations the procedure has converged.

14.3.7 Gaussian Mixtures as Soft K-means Clustering

The K-means clustering procedure is closely related to the EM algorithm
for estimating a certain Gaussian mixture model. (Sections 6.8 and 8.5.1).

Enlarged minimization:

510 14. Unsupervised Learning

Algorithm 14.1 K-means Clustering.

1. For a given cluster assignment C, the total cluster variance (14.33) is
minimized with respect to {m1, . . . , mK} yielding the means of the
currently assigned clusters (14.32).

2. Given a current set of means {m1, . . . , mK}, (14.33) is minimized by
assigning each observation to the closest (current) cluster mean. That
is,

C(i) = argmin
1≤k≤K

||xi −mk||2. (14.34)

3. Steps 1 and 2 are iterated until the assignments do not change.

C∗ = min
C

K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2

can be obtained by noting that for any set of observations S

x̄S = argmin
m

∑

i∈S

||xi −m||2. (14.32)

Hence we can obtain C∗ by solving the enlarged optimization problem

min
C,{mk}K

1

K∑

k=1

Nk

∑

C(i)=k

||xi −mk||2. (14.33)

This can be minimized by an alternating optimization procedure given in
Algorithm 14.1.

Each of steps 1 and 2 reduces the value of the criterion (14.33), so that
convergence is assured. However, the result may represent a suboptimal
local minimum. The algorithm of Hartigan and Wong (1979) goes further,
and ensures that there is no single switch of an observation from one group
to another group that will decrease the objective. In addition, one should
start the algorithm with many different random choices for the starting
means, and choose the solution having smallest value of the objective func-
tion.

Figure 14.6 shows some of the K-means iterations for the simulated data
of Figure 14.4. The centroids are depicted by “O”s. The straight lines show
the partitioning of points, each sector being the set of points closest to
each centroid. This partitioning is called the Voronoi tessellation. After 20
iterations the procedure has converged.

14.3.7 Gaussian Mixtures as Soft K-means Clustering

The K-means clustering procedure is closely related to the EM algorithm
for estimating a certain Gaussian mixture model. (Sections 6.8 and 8.5.1).
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FIGURE 14.8. Total within-cluster sum of squares for K-means clustering ap-
plied to the human tumor microarray data.

TABLE 14.2. Human tumor data: number of cancer cases of each type, in each
of the three clusters from K-means clustering.

Cluster Breast CNS Colon K562 Leukemia MCF7

1 3 5 0 0 0 0
2 2 0 0 2 6 2
3 2 0 7 0 0 0

Cluster Melanoma NSCLC Ovarian Prostate Renal Unknown

1 1 7 6 2 9 1
2 7 2 0 0 0 0
3 0 0 0 0 0 0

The data are a 6830 × 64 matrix of real numbers, each representing an
expression measurement for a gene (row) and sample (column). Here we
cluster the samples, each of which is a vector of length 6830, correspond-
ing to expression values for the 6830 genes. Each sample has a label such
as breast (for breast cancer), melanoma, and so on; we don’t use these la-
bels in the clustering, but will examine posthoc which labels fall into which
clusters.

We applied K-means clustering with K running from 1 to 10, and com-
puted the total within-sum of squares for each clustering, shown in Fig-
ure 14.8. Typically one looks for a kink in the sum of squares curve (or its
logarithm) to locate the optimal number of clusters (see Section 14.3.11).
Here there is no clear indication: for illustration we chose K = 3 giving the
three clusters shown in Table 14.2.
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K-medoids

About K-means

The squared Euclidean distance is used: d(xi , xi ′) = ‖xi − xi ′‖2, which
places the highest influence on the largest distances.

Not robust against outliers with large distances.

K-medoids: an alternating algorithm that tries to solve

14.3 Cluster Analysis 517

TABLE 14.3. Data from a political science survey: values are average pairwise
dissimilarities of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG

BRA 5.58
CHI 7.00 6.50
CUB 7.08 7.00 3.83
EGY 4.83 5.08 8.17 5.83
FRA 2.17 5.75 6.67 6.92 4.92
IND 6.42 5.00 5.58 6.00 4.67 6.42
ISR 3.42 5.50 6.42 6.42 5.00 3.92 6.17
USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75
USS 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17
YUG 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67
ZAI 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92

min
C, {ik}K

1

K∑

k=1

∑

C(i)=k

diik
. (14.38)

Kaufman and Rousseeuw (1990) propose an alternative strategy for directly
solving (14.38) that provisionally exchanges each center ik with an obser-
vation that is not currently a center, selecting the exchange that produces
the greatest reduction in the value of the criterion (14.38). This is repeated
until no advantageous exchanges can be found. Massart et al. (1983) derive
a branch-and-bound combinatorial method that finds the global minimum
of (14.38) that is practical only for very small data sets.

Example: Country Dissimilarities

This example, taken from Kaufman and Rousseeuw (1990), comes from a
study in which political science students were asked to provide pairwise dis-
similarity measures for 12 countries: Belgium, Brazil, Chile, Cuba, Egypt,
France, India, Israel, United States, Union of Soviet Socialist Republics,
Yugoslavia and Zaire. The average dissimilarity scores are given in Ta-
ble 14.3. We applied 3-medoid clustering to these dissimilarities. Note that
K-means clustering could not be applied because we have only distances
rather than raw observations. The left panel of Figure 14.10 shows the
dissimilarities reordered and blocked according to the 3-medoid clustering.
The right panel is a two-dimensional multidimensional scaling plot, with
the 3-medoid clusters assignments indicated by colors (multidimensional
scaling is discussed in Section 14.8.) Both plots show three well-separated
clusters, but the MDS display indicates that “Egypt” falls about halfway
between two clusters.
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Algorithm 14.2 K-medoids Clustering.

1. For a given cluster assignment C find the observation in the cluster
minimizing total distance to other points in that cluster:

i∗k = argmin
{i:C(i)=k}

∑

C(i′)=k

D(xi, xi′). (14.35)

Then mk = xi∗
k
, k = 1, 2, . . . , K are the current estimates of the

cluster centers.

2. Given a current set of cluster centers {m1, . . . , mK}, minimize the to-
tal error by assigning each observation to the closest (current) cluster
center:

C(i) = argmin
1≤k≤K

D(xi, mk). (14.36)

3. Iterate steps 1 and 2 until the assignments do not change.

(14.112). This requires all of the variables to be of the quantitative type. In
addition, using squared Euclidean distance places the highest influence on
the largest distances. This causes the procedure to lack robustness against
outliers that produce very large distances. These restrictions can be re-
moved at the expense of computation.

The only part of the K-means algorithm that assumes squared Eu-
clidean distance is the minimization step (14.32); the cluster representatives
{m1, . . . , mK} in (14.33) are taken to be the means of the currently assigned
clusters. The algorithm can be generalized for use with arbitrarily defined
dissimilarities D(xi, xi′) by replacing this step by an explicit optimization
with respect to {m1, . . . , mK} in (14.33). In the most common form, cen-
ters for each cluster are restricted to be one of the observations assigned
to the cluster, as summarized in Algorithm 14.2. This algorithm assumes
attribute data, but the approach can also be applied to data described
only by proximity matrices (Section 14.3.1). There is no need to explicitly
compute cluster centers; rather we just keep track of the indices i∗k.

Solving (14.32) for each provisional cluster k requires an amount of com-
putation proportional to the number of observations assigned to it, whereas
for solving (14.35) the computation increases to O(N2

k ). Given a set of clus-
ter “centers,” {i1, . . . , iK}, obtaining the new assignments

C(i) = argmin
1≤k≤K

dii∗
k

(14.37)

requires computation proportional to K · N as before. Thus, K-medoids is
far more computationally intensive than K-means.

Alternating between (14.35) and (14.37) represents a particular heuristic
search strategy for trying to solve
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Example: country dissimilarities
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TABLE 14.3. Data from a political science survey: values are average pairwise
dissimilarities of countries from a questionnaire given to political science students.

BEL BRA CHI CUB EGY FRA IND ISR USA USS YUG

BRA 5.58
CHI 7.00 6.50
CUB 7.08 7.00 3.83
EGY 4.83 5.08 8.17 5.83
FRA 2.17 5.75 6.67 6.92 4.92
IND 6.42 5.00 5.58 6.00 4.67 6.42
ISR 3.42 5.50 6.42 6.42 5.00 3.92 6.17
USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75
USS 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17
YUG 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67
ZAI 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92

min
C, {ik}K

1

K∑

k=1

∑

C(i)=k

diik
. (14.38)

Kaufman and Rousseeuw (1990) propose an alternative strategy for directly
solving (14.38) that provisionally exchanges each center ik with an obser-
vation that is not currently a center, selecting the exchange that produces
the greatest reduction in the value of the criterion (14.38). This is repeated
until no advantageous exchanges can be found. Massart et al. (1983) derive
a branch-and-bound combinatorial method that finds the global minimum
of (14.38) that is practical only for very small data sets.

Example: Country Dissimilarities

This example, taken from Kaufman and Rousseeuw (1990), comes from a
study in which political science students were asked to provide pairwise dis-
similarity measures for 12 countries: Belgium, Brazil, Chile, Cuba, Egypt,
France, India, Israel, United States, Union of Soviet Socialist Republics,
Yugoslavia and Zaire. The average dissimilarity scores are given in Ta-
ble 14.3. We applied 3-medoid clustering to these dissimilarities. Note that
K-means clustering could not be applied because we have only distances
rather than raw observations. The left panel of Figure 14.10 shows the
dissimilarities reordered and blocked according to the 3-medoid clustering.
The right panel is a two-dimensional multidimensional scaling plot, with
the 3-medoid clusters assignments indicated by colors (multidimensional
scaling is discussed in Section 14.8.) Both plots show three well-separated
clusters, but the MDS display indicates that “Egypt” falls about halfway
between two clusters.
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FIGURE 14.10. Survey of country dissimilarities. (Left panel:) dissimilarities
reordered and blocked according to 3-medoid clustering. Heat map is coded from
most similar (dark red) to least similar (bright red). (Right panel:) two-dimen-
sional multidimensional scaling plot, with 3-medoid clusters indicated by different
colors.

14.3.11 Practical Issues

In order to apply K-means or K-medoids one must select the number of
clusters K∗ and an initialization. The latter can be defined by specifying
an initial set of centers {m1, . . . , mK} or {i1, . . . , iK} or an initial encoder
C(i). Usually specifying the centers is more convenient. Suggestions range
from simple random selection to a deliberate strategy based on forward
stepwise assignment. At each step a new center ik is chosen to minimize
the criterion (14.33) or (14.38), given the centers i1, . . . , ik−1 chosen at the
previous steps. This continues for K steps, thereby producing K initial
centers with which to begin the optimization algorithm.

A choice for the number of clusters K depends on the goal. For data
segmentation K is usually defined as part of the problem. For example,
a company may employ K sales people, and the goal is to partition a
customer database into K segments, one for each sales person, such that the
customers assigned to each one are as similar as possible. Often, however,
cluster analysis is used to provide a descriptive statistic for ascertaining the
extent to which the observations comprising the data base fall into natural
distinct groupings. Here the number of such groups K∗ is unknown and
one requires that it, as well as the groupings themselves, be estimated from
the data.

Data-based methods for estimating K∗ typically examine the within-
cluster dissimilarity WK as a function of the number of clusters K. Separate
solutions are obtained for K ∈ {1, 2, . . . , Kmax}. The corresponding values
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